HIMatrix

Safety-Related Controller

F30 Manual

HIMA Paul Hildebrandt GmbH + Co KG Industrial Automation

Rev. 1.01 HI 800 145 E

All HIMA products mentioned in this manual are protected by the HIMA trade-mark. Unless noted otherwise, this also applies to other manufacturers and their respective products referred to herein.

All of the instructions and technical specifications in this manual have been written with great care and effective quality assurance measures have been implemented to ensure their validity. For questions, please contact HIMA directly. HIMA appreciates any suggestion on which information should be included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material without prior notice.

For further information, refer to the CD-ROM and our website http://www.hima.de and http://www.hima.com.

© Copyright 2010, HIMA Paul Hildebrandt GmbH + Co KG All rights reserved

Contact

HIMA Address
HIMA Paul Hildebrandt GmbH + Co KG
P.O. Box 1261
68777 Brühl, Germany

Tel: +49 6202 709-0

Fax: +49 6202 709-107 E-mail: info@hima.com

Revision	Revisions	Type of Change		
index		technical	editorial	
1.00	Added: Configuration with SILworX	Χ	Х	
1.01	Deleted: Chapter <i>Monitoring the Temperature State</i> displaced into the system manual		Х	

Table of Contents

1	Introduction	7
1.1	Structure and Use of this Manual	7
1.2	Target Audience	8
1.3	Formatting Conventions	9
1.3.1	Safety Notes	
1.3.2	Operating Tips	10
2	Safety	11
2.1	Intended Use	11
2.1.1	Environmental Requirements	
2.1.2	ESD Protective Measures	11
2.2	Residual Risk	12
2.3	Safety Precautions	12
2.4	Emergency Information	12
3	Product Description	13
3.1	Safety Function	13
3.1.1	Safety-Related Digital Inputs	13
3.1.1.1 3.1.1.2	Reaction in the Event of a FaultLine Control	
3.1.2	Safety-Related Digital Outputs	15
3.1.2.1	Reaction in the Event of a Fault	
3.1.2.2	Line Control	16
3.2	Equipment, Scope of Delivery	
3.2.1	IP Address and System ID (SRS)	
3.3	Type Label	
3.4	Assembly	
3.4.1	LED Indicators	
3.4.1.1 3.4.1.2	Operating Voltage LED	
3.4.1.2 3.4.1.3	System LEDs Communication LEDs	
3.4.1.4	I/O LEDs	
3.4.1.5	Fieldbus LEDs	
3.4.2	Communication	
3.4.2.1	Connections for Ethernet Communication	
3.4.2.2	Network Ports Used for Ethernet Communication	
3.4.2.3	Connections for Fieldbus Communication	24
3.4.3	Pin Assignments	24
3.4.3.1	Pin Assignment of D-sub Connectors FB1 and FB2	
3.4.3.2	Pin Assignment of D-sub Connectors FB1 and FB2	
3.4.3.3	Pin Assignment of D-sub Connectors FB1 and FB2	
3.4.3.4	Pin Assignment of D-sub Connectors FB1 and FB2	
3.4.3.5 3.4.3.6	Pin Assignment of D-sub Connectors FB1 and FB2 Pin Assignment of the D-sub Connector FB3	
 n	Fin Assignment of the D-Sub Connector FB3	/n

9	Disposal	47
8	Transport	
7	Decommissioning	45
6.2 6.2.1 6.2.2	Maintenance Measures Loading the Operating System Proof Test	44
6.1 6.1.1 6.1.2	Faults Operating System Version 6.42 and Beyond Operating System Versions Prior to 6.42	44
6	Maintenance	44
5.1 5.2	Handling Diagnosis	43 43
5	Operation	43
4.4.2 4.4.3 4.4.4	Signals and Error Codes for the Inputs and Output Digital Inputs for F30 Digital Outputs for F30	40
4.4 4.4.1	Configuring a Controller Using ELOP II Factory Configuring the Inputs and Outputs	39
4.3.3 4.3.3.1 4.3.3.2	Digital Outputs for F30	37
4.3.2.1 4.3.2.2	Module Tab DO 20: Channels Tab	
4.3.1 4.3.2	Parameters and Error Codes for the Inputs and Output Digital Inputs for F30	34
4.2 4.3	ConfigurationConfiguration with SILworX	
4.1.1.1 4.1.2 4.1.3	Surges on Digital Inputs Connecting the Digital Outputs Mounting the F30 in Zone 2	32 33
4.1 4.1.1	Installation and Mounting Connection of the Digital Inputs	
4	Start-Up	
3.6	Certified HIMatrix F30	
3.5 3.5.1	Product Data Product Data F30 011 (F30 -20°)	
3.4.4 3.4.5	Hardware Clock	

Appendix	49
Glossary	49
Index of Figures	50
Index of Tables	51
Index	52

Table of Contents F30

Page 6 of 54 HI 800 145 E Rev. 1.01

F30 1 Introduction

1 Introduction

This manual describes the technical characteristics of the device and its use. It also includes instructions on how to install, start up and replace it.

1.1 Structure and Use of this Manual

The content of this manual is part of the hardware description of the HIMatrix programmable electronic system.

This manual is organized in the following main chapters:

- Introduction
- Safety
- Product Description
- Start-Up
- Operation
- Maintenance
- Decommissioning
- Transport
- Disposal

This manual distinguishes between the following variants of the HIMatrix system:

Programming tool	Processor operating system	Communication operating system
SILworX	Version 7 and beyond	Version 12 and beyond
ELOP II Factory	Versions prior to 7	Versions prior to 12

Table 1: HIMatrix System Variants

The manual distinguishes among the different variants using:

Separated chapters

1

- Tables differentiating among the versions, e.g., version 7 and beyond, or prior to version 7
- $\begin{tabular}{ll} \bf Projects \ created \ with \ ELOP \ II \ Factory \ cannot \ be \ edited \ with \ SILworX, \ and \ vice \ versa! \end{tabular}$
 - This manual usually refers to compact controllers and remote I/Os as *devices*, and to the plug-in cards of a modular controller as *modules*.

HI 800 145 E Rev. 1.01 Page 7 of 54

1 Introduction F30

Additionally, the following documents must be taken into account:

Name	Content	Document number
HIMatrix System Manual Compact Systems	Hardware description of the HIMatrix compact systems	HI 800 141 E
HIMatrix System Manual Modular System F60	Hardware description of the HIMatrix modular system	HI 800 191 E
Himatrix Safety Manual	Safety functions of the HIMatrix system	HI 800 023 E
HIMatrix Engineering Manual	Project planning description for HIMatrix systems	HI 800 101 E
HIMax Communication Manual	Description of the communication protocols, ComUserTask and their configuration in SILworX	HI 801 101 E
HIMatrix PROFIBUS DP Master/Slave Manual	Description of the PROFIBUS protocol and its configuration in ELOP II Factory	HI 800 009 E
HIMatrix Modbus Master/Slave Manual	Description of the Modbus protocol and its configuration in ELOP II Factory	HI 800 003 E
HIMatrix TCP S/R Manual	Description of the TCP S/R protocol and its configuration in ELOP II Factory	HI 800 117 E
HIMatrix ComUserTask (CUT) Manual	Description of the ComUserTask and its configuration in ELOP II Factory	HI 800 329 E
SILworX Online Help	Instructions on how to use SILworX	-
ELOP II Factory Online Help	Instructions on how to use ELOP II Factory, Ethernet IP protocol, INTERBUS protocol	-
First Steps SILworX	Introduction to SILworX using the HIMax system as an example	HI 801 103 E
First Steps ELOP II Factory	Introduction to ELOP II Factory	HI 800 006 E

Table 2: Additional Relevant Documents

The latest manuals can be downloaded from the HIMA website www.hima.com. The revision index on the footer can be used to compare the current version of existing manuals with the Internet edition.

1.2 Target Audience

This document addresses system planners, configuration engineers, programmers of automation devices and personnel authorized to implement, operate and maintain the modules and systems. Specialized knowledge of safety-related automation systems is required.

Page 8 of 54 HI 800 145 E Rev. 1.01

F30 1 Introduction

1.3 Formatting Conventions

To ensure improved readability and comprehensibility, the following fonts are used in this document:

Bold: To highlight important parts

Names of buttons, menu functions and tabs that can be clicked and

used in the programming tool.

Italics: For parameters and system variables

Courier Literal user inputs

RUN Operating state are designated by capitals

Chapter 1.2.3 Cross references are hyperlinks even though they are not

particularly marked. When the cursor hovers over a hyperlink, it changes its shape. Click the hyperlink to jump to the corresponding

position.

Safety notes and operating tips are particularly marked.

1.3.1 Safety Notes

The safety notes are represented as described below.

These notes must absolutely be observed to reduce the risk to a minimum. The content is structured as follows:

- Signal word: danger, warning, caution, notice
- Type and source of danger
- Consequences arising from the danger
- Danger prevention

A SIGNAL WORD

Type and source of danger!

Consequences arising from the danger

Danger prevention

The signal words have the following meanings:

- Danger indicates hazardous situation which, if not avoided, will result in death or serious injury.
- Warning indicates hazardous situation which, if not avoided, could result in death or serious injury.
- Warning indicates hazardous situation which, if not avoided, could result in minor or modest injury.
- Notice indicates a hazardous situation which, if not avoided, could result in property damage.

NOTE

Type and source of damage! Damage prevention

HI 800 145 E Rev. 1.01 Page 9 of 54

1 Introduction F30

1.3.2 Operating Tips Additional information is structured as presented in the following example: The text corresponding to the additional information is located here. Useful tips and tricks appear as follows:

TIP The tip text is located here.

Page 10 of 54 HI 800 145 E Rev. 1.01

F30 2 Safety

2 Safety

The following safety information, notes and instructions must be strictly observed. The product may only be used if all guidelines and safety instructions are adhered to.

This product is operated with SELV or PELV. No imminent danger results from the product itself. The use in Ex-Zone is permitted if additional measures are taken.

2.1 Intended Use

HIMatrix components are designed for assembling safety-related controller systems.

When using the components in the HIMatrix system, comply with the following general requirements

2.1.1 Environmental Requirements

Requirement type	Range of values 1)		
Protection class	Protection class III in accordance with IEC/EN 61131-2		
Ambient temperature	0+60 °C		
Storage temperature	-40+85 °C		
Pollution	Pollution degree II in accordance with IEC/EN 61131-2		
Altitude	< 2000 m		
Housing	Standard: IP20		
Supply voltage	24 VDC		
1) The values are difficulty the technical data and a section for decision with			

The values specified in the technical data apply and are decisive for devices with extended environmental requirements.

Table 3: Environmental Requirements

Exposing the HIMax system to environmental conditions other than those specified in this manual can cause the HIMatrix system to malfunction.

2.1.2 ESD Protective Measures

Only personnel with knowledge of ESD protective measures may modify or extend the system or replace devices.

NOTE

Device damage due to electrostatic discharge!

- When performing the work, make sure that the workspace is free of static, and wear an ESD wrist strap.
- If not used, ensure that the device is protected from electrostatic discharge, e.g., by storing it in its packaging.

HI 800 145 E Rev. 1.01 Page 11 of 54

2 Safety F30

2.2 Residual Risk

No imminent danger results from a HIMatrix system itself.

Residual risk may result from:

- Faults in the engineering
- Faults in the user program
- Faults in the wiring

2.3 Safety Precautions

Observe all local safety requirements and use the protective equipment required on site.

2.4 Emergency Information

A HIMatrix system is a part of the safety equipment of a site. If a device or a module fails, the site adopts the safe state.

In case of emergency, no action that may prevent the HIMatrix systems from operating safely is permitted.

Page 12 of 54 HI 800 145 E Rev. 1.01

3 Product Description

The safety-related **F30** controller is a compact system located in a metal enclosure with 20 digital inputs and 8 digital outputs.

The controller is available in a model variant for SILworX and a model variant for ELOP II Factory, see Chapter 3.2. All variants are described in this manual.

The device is suitable for mounting in Ex-zone 2, see Chapter 4.1.3.

The device has been certified by the TÜV for safety-related applications up to SIL 3 (IEC 61508, IEC 61511 and IEC 62061), Cat. 4 (EN 954-1) and PL e (EN ISO 13849-1). Further safety standards, application standards and test standards are specified in the certificate available on the HIMA website.

3.1 Safety Function

The controller is equipped with safety-related digital inputs and outputs.

3.1.1 Safety-Related Digital Inputs

The controller is equipped with 20 digital inputs. The state (HIGH, LOW) of each input is signaled by an individual LED.

Mechanical contacts without own power supply or signal power source can be connected to the inputs.

Potential-free mechanical contacts without own power supply are fed via an internal short-circuit-proof 24 V power source (LS+). Each of them supply a group of 4 mechanical contacts. Figure 1 shows how the connection is performed.

With signal voltage sources, the corresponding ground must be connected to the input (L-), see Figure 1.

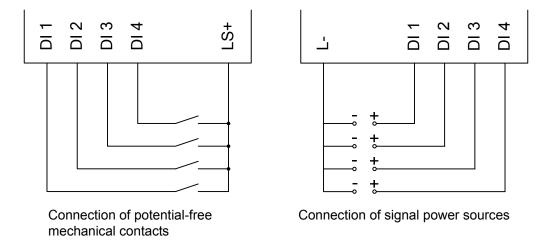


Figure 1: Connections to Safety-Related Digital Inputs

For the external wiring and the connection of sensors, apply the de-energized-to-trip principle. Thus, if a fault occurs, the input signals adopt a de-energized, safe state (low level).

If an external wire is not monitored, an open-circuit is considered as safe low level.

HI 800 145 E Rev. 1.01 Page 13 of 54

3.1.1.1 Reaction in the Event of a Fault

If the device detects a fault on a digital input, the user program processes a low level in accordance with the de-energized to trip principle.

The device activates the FAULT LED.

In addition to the channel signal value, the user program must also consider the corresponding error code.

The error code allows the user to configure additional fault reactions in the user program.

3.1.1.2 Line Control

Line control is used to detect short-circuits or open-circuits and can be configured for the F30 system, e.g., on EMERGENCY STOP inputs complying with Cat. 4 in accordance with EN 954-1.

To this end, connect the digital outputs DO 1 through DO 8 of the system to the digital inputs DI of the same system as follows:

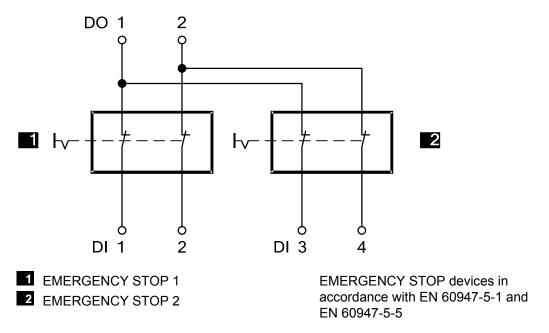


Figure 2: Line Control

The controller pulses the digital outputs to detect the line short-circuits and open-circuits to the digital inputs. To do so, configure the *Value*.[BOOL] -> system variable in SILworX and the *DO[0x]*. *Value* system signal in ELOP II Factory. The variables for the pulsed outputs must begin with channel 1 and reside in direct sequence, one after the other.

If the following faults occur, the *FAULT* LED located on the front plate of the controller blinks, the inputs are set to low level and an (evaluable) error code is created:

- Cross-circuit between two parallel lines,
- Improper connections of two lines (e.g., DO 2 to DI 3),
- Earth fault of a line (with earthed ground only),
- Open-circuit or open contacts, i.e., also if one of the two EMERGENCY STOP switches previously mentioned the FAULT LED is being engaged.

For more information on how to configure line control in the user program, refer to the HIMatrix Engineering Manual (HI 800 101 E).

Page 14 of 54 HI 800 145 E Rev. 1.01

3.1.2 Safety-Related Digital Outputs

The controller is equipped with 8 digital outputs. The state (HIGH, LOW) of each output is signaled by an individual LED.

At the maximum ambient temperature, the outputs 1...3 and 5...7 can be loaded with 0.5 A each, and outputs 4 and 8 can be loaded with 1 A or with 2 A at an ambient temperature of up to $50\,^{\circ}$ C.

If an overload occurs, one or all outputs are switched off. If the overload is removed, the outputs are switched on again automatically, see Table 21.

The external wire of an output is not monitored, however, a detected short-circuit is signaled.

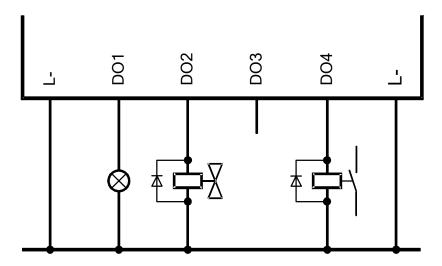


Figure 3: Connecting Actuators to Outputs

A WARNING

For connecting a load to a 1-pole switching output, use the corresponding L- ground of the respective channel group (2-pole connection) to ensure that the internal protective circuit can function.

Inductive loads may be connected with no free-wheeling diode on the actuator. However, HIMA strongly recommends connecting a protective diode directly to the actuator.

3.1.2.1 Reaction in the Event of a Fault

If the device detects a faulty signal on a digital output, the affected module output is set to the safe (de-energized) state using the safety switches.

If a fault in the device occurs, all digital outputs are switched off.

In both cases, the devices activates the FAULT LED.

The error code allows the user to configure additional fault reactions in the user program.

HI 800 145 E Rev. 1.01 Page 15 of 54

3.1.2.2 Line Control

The digital outputs can be used to detect the inputs for short-circuits and open-circuits, e.g., for an EMERGENCY STOP button complying with Cat. 4 in accordance with EN 954-1. To this end, the outputs are pulsed and connected to the safety-related digital inputs of the same device, see Chapter 3.1.1. In this case, the digital outputs assume the function of pulsed outputs.

A WARNING

Pulsed outputs must not be used as safety-related outputs!

Page 16 of 54 HI 800 145 E Rev. 1.01

3.2 Equipment, Scope of Delivery

The available components and their part numbers are listed below:

Designation	Description	Part no.
F30 01	Compact controller with 20 digital inputs and 8 digital outputs. Operating temperature 0+60 °C, for ELOP II Factory programming tool	98 2200415
F30 011 (-20 °C)	Compact controller with 20 digital inputs and 8 digital outputs. Operating temperature -20 °C+60 °C, for ELOP II Factory programming tool	98 2200455
F30 01 SILworX	Compact controller with 20 digital inputs and 8 digital outputs. Operating temperature 0+60 °C, for SILworX programming tool	98 2200472
F30 011 SILworX (-20 °C)	Compact controller with 20 digital inputs and 8 digital outputs. Operating temperature -20 °C+60 °C, for SILworX programming tool	98 2200478

Table 4: Part Numbers

3.2.1 IP Address and System ID (SRS)

A transparent label is delivered with the device to allow one to note the IP address and the system ID (SRS for system rack slot) after a change.

IP	_SRS

Default value for IP address: 192.168.0.99
Default value for SRS: 60000.0.0

The label must not be affixed such that the air vents on the cabinet are covered.

Refer to the First Steps manual of the programming tool for more information on how to modify the IP address and the system ID.

HI 800 145 E Rev. 1.01 Page 17 of 54

3.3 Type Label

The type plate contains the following details:

- Product name
- Bar code (1D or 2D code)
- Part no.
- Production year
- Hardware revision index (HW Rev.)
- Firmware revision index (FW Rev.)
- Operating voltage
- Mark of conformity

Figure 4: Sample Type Label

Page 18 of 54 HI 800 145 E Rev. 1.01

3.4 Assembly

This chapter describes the layout and function of the controller, and their connection for communication.

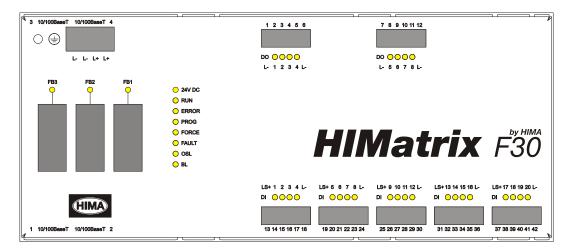
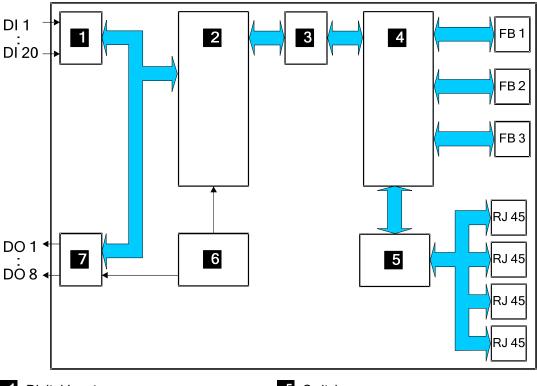



Figure 5: Front View

- 1 Digital Inputs
- 2 Safety-Related Processor System
- 3 Dual Port RAM
- 4 Communication System
- Figure 6: Block Diagram

- 5 Switch
- 6 Watchdog
- 7 Digital Outputs

HI 800 145 E Rev. 1.01 Page 19 of 54

3.4.1 LED Indicators

The light-emitting diodes (LEDs) indicate the operating state of the controller. The LEDs are classified as follows:

- Operating Voltage LED
- System LEDs
- Communication LEDs
- I/O LEDs
- Fieldbus LEDs

3.4.1.1 Operating Voltage LED

LED	Color	Status	Description
24 VDC	Green	On	24 VDC operating voltage present
		Off	No operating voltage

Table 5: Operating Voltage LED

Page 20 of 54 HI 800 145 E Rev. 1.01

3.4.1.2 System LEDs

While the system is being booted, all LEDs are lit simultaneously.

LED	Color	Status	Description
RUN	Green	On	Device in RUN, normal operation
			A loaded user program is being executed (not with remote I/Os).
		Blinking	Device in STOP
			A new operating system is being loaded.
		Off	The device is not in the RUN state.
ERROR	Red	On	The device is in the ERROR STOP state.
			Internal fault detected by self-tests
			e.g., hardware fault, software error or cycle time overrun.
			The processor system can only be restarted with a command from the PADT (reboot).
		Blinking	If ERROR blinks and all others LEDs are lit simultaneously, the boot loader has detected an operating system fault in the flash memory and waits for a new operating system to be loaded.
		Off	No faults detected.
PROG	Yellow	On	A new configuration is being loaded into the device.
		Blinking	The device switches from INIT to STOP
			A new operating system is being loaded into the flash ROM.
		Off	No configuration or operating system is being loaded.
FORCE	Yellow	On	The device is in RUN, forcing was activated.
		Blinking	The device is in STOP, forcing has been prepared and is activated when the device is started.
		Off	Forcing is not activated. The FORCE LED of a remote I/O is not functioning. The FORCE LED of the associated controller serves to signal the forcing of a remote I/O.
FAULT	Yellow	On	The loaded configuration is defective.
			The new operating system is corrupted (after OS download).
		Blinking	Fault while loading a new operating system
			One or multiple I/O faults occurred.
		Off	None of the described faults occurred.
OSL	Yellow	Blinking	Operating system emergency loader active.
		Off	Operating system emergency loader inactive.
BL	Yellow	Blinking	OS and OLS binary defective or INIT_FAIL hardware fault.
		Off	Boot loader inactive

Table 6: System LEDs

HI 800 145 E Rev. 1.01 Page 21 of 54

3.4.1.3 Communication LEDs

All RJ-45 connectors are provided with a green and a yellow LED. The LEDs signal the following states:

LED	Status	Description			
Green	On	Full duplex operation			
	Blinking	Collision			
	Off	Half duplex operation, no collision			
Yellow	On	Connection available			
	Blinking	Interface activity			
	Off	No connection available			

Table 7: Ethernet Indicators

3.4.1.4 I/O LEDs

LED	Color	Status	Description	
DI 120	Yellow	On	The related channel is active (energized).	
		Off	The related channel is inactive (de-energized).	
DO 18	Yellow	On	The related channel is active (energized).	
		Off	The related channel is inactive (de-energized).	

Table 8: I/O LEDs

3.4.1.5 Fieldbus LEDs

LEDs FB1...3 are used to display the state of communication occurring via the serial interfaces. The function of the LED depends on the used protocol.

Refer to the corresponding Communication Manual for more details on the function.

Page 22 of 54 HI 800 145 E Rev. 1.01

3.4.2 Communication

The controller communicates with remote I/Os via safeethernet.

3.4.2.1 Connections for Ethernet Communication

Property	Description		
Port	4 x RJ-45		
Transfer standard	10/100/Base-T, half and full duplex		
Auto negotiation	Yes		
Auto crossover	Yes		
Connection socket	RJ-45		
IP address	Freely configurable ¹⁾		
Subnet mask	Freely configurable ¹⁾		
Supported protocols	 Safety-related: safeethernet Non-safety-related: Ethernet/IP²⁾, OPC, programming and debugging tool (PADT), TCP-SR, SNTP, Modbus TCP 		
¹⁾ The general rules for assigning IP address and subnet masks must be adhered to.			
2) EtherNet/IP is not supported in SILworX			

Table 9: Ethernet Interfaces Properties

Two RJ-45 connectors with integrated LEDs are located on the top and on the bottom left-hand side of the enclosure. Refer to 3.4.1.3 for a description of the LEDs' function.

The connection parameters are read based on the MAC address (media access control address) defined during manufacturing.

The MAC address for the controller is specified on a label located above the two RJ-45 connectors (1 and 2).

MAC 00:E0:A1:00:06:C0

Figure 7: Sample MAC Address Label

The HIMatrix F30 is equipped with an integrated switch for safety-related Ethernet communication (safe**ethernet**). For further information on the integrated switch and safe**ethernet**, refer to Chapter Communication of the System Manual for Compact Systems (HI 800 141 E).

3.4.2.2 Network Ports Used for Ethernet Communication

UDP ports	Use
8000	Programming and operation with the programing tool
8001	Configuration of the remote I/O using the PES (ELOP II Factory)
8004	Configuration of the remote I/O using the PES (SILworX)
6010	safeethernet and OPC
123	SNTP (time synchronization between PES and remote I/O, PES and external devices)
6005/ 6012	If TCS_DIRECT was not selected in the HH network
502	Modbus (can be modified by the user)
44818	EtherNet/IP session protocol for device identification
2222	EtherNet/IP Data Exchange

Table 10: Network Ports (UDP Ports) in Use

HI 800 145 E Rev. 1.01 Page 23 of 54

TCP ports	Use
502	Modbus (can be modified by the user)
XXX	TCP SR assigned by the user
44818	Ethernet/IP Explicit Messaging Services

Table 11: Network Ports (TCP Ports) in Use

3.4.2.3 Connections for Fieldbus Communication

The three 9-pole D-sub connectors are located on the front plate of the enclosure.

Designation	Fieldbus submodule	Protocols	
FB 1	PROFIBUS master	PROFIBUS DP master	
(with module)	PROFIBUS slave	PROFIBUS DP slave	
	RS485 module	RS485 for Modbus (master or slave) and ComUserTask	
	RS232 module	RS232 for ComUserTask	
	RS422 module	RS422 for ComUserTask	
	INTERBUS Master	INTERBUS ¹⁾ master	
FB 2	PROFIBUS master	PROFIBUS DP master	
(with module)	PROFIBUS slave	PROFIBUS DP slave	
	RS485 module	RS485 for Modbus (master or slave) and ComUserTask	
	RS232 module	RS232 for ComUserTask	
	RS422 module	RS422 for ComUserTask	
	INTERBUS master	INTERBUS ¹⁾ master	
FB 3	RS485	RS485 for Modbus (master or slave) and ComUserTask	
1) INTERBUS is not supported in SILworX.			

Table 12: Connections for Fieldbus Communication

The fieldbus submodules for communication via FB1 and FB2 are optional and aremust be mounted by the manufacturer.

3.4.3 Pin Assignments

The following tables describe the Pin assignments of the fieldbus connectors.

3.4.3.1 Pin Assignment of D-sub Connectors FB1 and FB2

with fieldbus submodule for PROFIBUS DP master or slave

Connection	Signal	Function
1		
2		
3	RxD/TxD-A	Receive/send data A
4	RTS	Control signal
5	DGND	Data ground
6	VP	5 V, plus pole supply voltage
7		
8	RxD/TxD-B	Receive/send data B
9		

Table 13: Pin Assignment of D-sub Connectors FB1 and FB2 for PROFIBUS DP

Page 24 of 54 HI 800 145 E Rev. 1.01

3.4.3.2 Pin Assignment of D-sub Connectors FB1 and FB2 with RS485 fieldbus submodule for Modbus master or slave and ComUserTask

Connection	Signal	Function
1		
2	RP	5 V decoupled with diodes
3	RxD/TxD-A	Receive/send data A
4	CNTR-A	Control signal A
5	DGND	Data ground
6	VP	5 V, plus pole supply voltage
7		
8	RxD/TxD-B	Receive/send data B
9	CNTR-B	Control signal B

Table 14: Pin Assignment of the D-sub Connectors FB1 and FB2 for RS485

3.4.3.3 Pin Assignment of D-sub Connectors FB1 and FB2 with RS232 fieldbus submodule for ComUserTask

Connection	Signal	Function
1		
2	TxD	Send data
3	RxD	Receive data
4		
5	DGND	Data ground
6		
7	RTS	Request to send
8		
9		

Table 15: Pin Assignment of the D-sub Connectors FB1 and FB2 for RS232

3.4.3.4 Pin Assignment of D-sub Connectors FB1 and FB2

with RS422 fieldbus submodule for ComUserTask

Connection	Signal	Function
1		
2	RP	+5 V decoupled with diodes
3	RxA	Receive data A
4	TxA	Send data A
5	DGND	Data ground
6	VP	+5 V supply voltage
7		
8	RxB	Receive data B
9	TxB	Send data B

Table 16: Pin Assignment of the D-sub Connectors FB1 and FB2 for RS422

HI 800 145 E Rev. 1.01 Page 25 of 54

3.4.3.5 Pin Assignment of D-sub Connectors FB1 and FB2 with fieldbus submodule for INTERBUS

Connection	Signal	Function
1	DO	Positive data output
2	DI	Positive data input
3	COM	Common 0 V line
4		
5		
6	DO-	Negative data input
7	DI-	Negative data output
8		
9		

Table 17: Pin Assignment of the D-sub Connectors FB1 and FB2 for INTERBUS

3.4.3.6 Pin Assignment of the D-sub Connector FB3 Modbus master or slave

Connection	Signal	Function
1		
2		
3	RxD/TxD-A	Receive/send data A
4	CNTR-A	Control signal A
5	DGND	Data ground
6	VP	5 V, plus pole supply voltage
7		
8	RxD/TxD-B	Receive/send data B
9	CNTR-B	Control signal B

Table 18: Pin Assignment of D-sub Connector FB3 for Modbus

Page 26 of 54 HI 800 145 E Rev. 1.01

3.4.4 Reset Key

The controller is equipped with a reset key. The key is only required if the user name or password for administrator access is not known. If only the IP address set for the controller does not match the PADT (PC), the connection can be established with a Route add entry on the PC.

The key can be accessed through a small round hole located approximately 5 cm from the upper left-hand side of the enclosure. The key is engaged using a suitable pin made of insulating material to avoid short-circuits within the controller.

The reset is only effective if the controller is rebooted (switched off and on) while the key is simultaneously engaged for at least 20 seconds. Engaging the key during operation has no effect.

A WARNING

Caution! Fieldbus communication may be disturbed!

Prior to switching on the controller with the reset key engaged, all device fieldbus connectors must be unplugged to ensure that the fieldbus communication among other stations is not disturbed.

The fieldbus plugs may only be plugged in again when the controller is in the RUN or STOP state.

Properties and behavior of the controller after a reboot with engaged reset key:

- Connection parameters (IP address and system ID) are set to the default values.
- All accounts are deactivated except for the default account administrator with empty password.
- With COM operating system version 10.42 and beyond, loading a user program or operating system with default connection parameters is inhibited!
 The loading procedure is only allowed after the connection parameters and the account have been configured on the controller and the controller has been rebooted.

After a new reboot without the reset key engaged, the connection parameters (IP address and system ID) and accounts become effective.

- Those configured by the user.
- Those valid prior to rebooting with the reset key engaged, if no changes were performed.

3.4.5 Hardware Clock

In case of loss of operating voltage, the power provided by an integrated gold capacitor is sufficient to buffer the hardware clock for approximately one week.

HI 800 145 E Rev. 1.01 Page 27 of 54

3.5 Product Data

General		
User memory	Versions prior to 6.46	max. 500 kB user program max. 500 kB user data
	Version 6.100	max. 2047 kB user program max. 2047 kB user data
	Version 7	max. 1023 kB user program max. 1023 kB user data
Response time	≥ 20 ms	
Interfaces:		
Ethernet	4 x RJ-45, 10/100BaseT	(with 100 Mbit/s)
	with integrated switch	
PROFIBUS DP master/slave	9-pole D-sub (FB2, FB2)	
Modbus master/slave		
INTERBUS master		
RS485	9-pole D-sub (FB3)	
(Modbus master/slave)		
Operating voltage	24 VDC, -15 %+20 %,	
	from a power supply unit	
	in accordance with IEC 6	
Current input	max. 8 A (with maximum	n load)
	Idle: 0.5 A	
Fuse (external)	10 A time-lag (T)	
Buffer for date/time	Gold capacitor	
Operating temperature	0 °C+60 °C	
Storage temperature	-40 °C+85 °C	
Type of protection	IP20	
Max. dimensions	Width: 257 mm (with enclosure screws)	
(without plug)	Height: 114 mm (with fixing bolt)	
	Depth: 66 mm (with ear	thing screw)
Weight	approx. 1.2 kg	

Table 19: Product Data

Digital inputs			
Number of inputs		20 (non-galvanically isolated)	
High level: Voltage		1530 VDC	
	Current input	≥ 2 mA at 15 V	
Low level:	Voltage	max. 5 VDC	
	Current input	max. 1.5 mA (1 mA at 5 V)	
Switching poir	nt	typ. 7.5 V	
Supply		5 x 20 V / 100 mA (at 24 V), short-circuit-proof	

Table 20: Specifications for the Digital Inputs

Page 28 of 54 HI 800 145 E Rev. 1.01

Digital outputs			
Number of outputs	8 (non-galvanically isolated)		
Output voltage	≥ L+ minus 2 V		
Output current	Channels 13 and 57: 0.5 A at 60 °C Channels 4 and 8: 1 A at 60 °C, 2 A at 50 °C)		
Minimum load	2 mA for each channel		
Internal voltage drop	max. 2 V at 2 A		
Leakage current (with low level)	max. 1 mA at 2 V		
Behavior with overload	The affected output is switched off and cyclically switched on again		
Total output current	max. 7 mA Upon overload, all outputs are switched off and cyclically switched on again		

Table 21: Specifications for the Digital Outputs

3.5.1 Product Data F30 011 (F30 -20°)

The F30 011 model variant is intended for use at the extended temperature range of -20°C...+60 °C. The electronic components are coated with a protective lacquer.

General				
Operating temperature	-20+60 °C			
Weight	approx. 1.2 kg			

Table 22: Product Data F30 011

HI 800 145 E Rev. 1.01 Page 29 of 54

3.6 Certified HIMatrix F30

HIMatrix F30					
CE	EMC, ATEX Zone 2				
TÜV	IEC 61508 1-7:2000 up to SIL 3				
	IEC 61511:2004				
	EN 954-1:1996 up to Cat. 4				
TÜV ATEX	94/9/EG				
	EN 1127-1				
	EN 61508				
Lloyd's Register	Shipping certification				
	ENV1, ENV2 and ENV3.				
	Test Specification Number: 1 - 2002				
UL Underwriters	ANSI/UL 508, NFPA 70 – Industrial Control Equipment				
Laboratories Inc.	CSA C22.2 No.142				
	UL 1998 Software Programmable Components				
	NFPA 79 Electrical Standard for Industrial Machinery				
	IEC 61508				
FM Approvals	Class I, DIV 2, Groups A, B, C and D				
	Class 3600, 1998				
	Class 3611, 1999				
	Class 3810, 1989				
	Including Supplement #1, 1995				
	CSA C22.2 No 142				
DD05IDU0	CSA C22.2 No 213				
PROFIBUS	Test Specification for PROFIBUS DP Slave,				
Nutzerorganistion (PNO)	Version 3.0 November 2005				

Table 23: Certificates

Page 30 of 54 HI 800 145 E Rev. 1.01

F30 4 Start-Up

4 Start-Up

To start up the controller, it must be mounted, connected and configured in the programming tool.

4.1 Installation and Mounting

The controller is mounted on a 35 mm DIN rail such as described in the HIMatrix Manual for Compact Systems.

4.1.1 Connection of the Digital Inputs

Use the following terminals to connect the digital inputs:

Terminal	Designation	Function		
13	LS+	Sensor supply of the inputs 14		
14	1	Digital input 1		
15	2	Digital input 2		
16	3	Digital input 3		
17	4	Digital input 4		
18	L-	Ground		
Terminal	Designation	Function		
19	LS+	Sensor supply of the inputs 58		
20	5	Digital input 5		
21	6	Digital input 6		
22	7	Digital input 7		
23	8	Digital input 8		
24	L-	Ground		
Terminal	Designation	Function		
25	LS+	Sensor supply of the inputs 912		
26	9	Digital input 9		
27	10	Digital input 10		
28	11	Digital input 11		
29	12	Digital input 12		
30	L-	Ground		
Terminal	Designation	Function		
31	LS+	Sensor supply of the inputs 1316		
32	13	Digital input 13		
33	14	Digital input 14		
34	15	Digital input 15		
35	16	Digital input 16		
36	L-	Ground		
Terminal	Designation	Function		
37	LS+	Sensor supply of the inputs 1720		
38	17	Digital input 17		
39	18	Digital input 18		
40	19	Digital input 19		
41	20	Digital input 20		
42	L-	Ground		

Table 24: Terminal Assignment for the Digital Inputs

HI 800 145 E Rev. 1.01 Page 31 of 54

4 Start-Up F30

4.1.1.1 Surges on Digital Inputs

Due to the short cycle time of the HIMatrix systems, a surge pulse as described in EN 61000-4-5 can be read in to the digital inputs as a short-term high level.

The following measures ensure proper operation in environments where surges may occur:

- 1. Install shielded input wires
- 2. Activate noise blanking: a signal must be present for at least two cycles before it is evaluated.
- $\overset{\bullet}{1}$ Activating noise blanking increases the response time of the HIMatrix system!
- $\overset{\centerdot}{1} \qquad \text{The measures specified above are not necessary if the plant design precludes surges from occurring within the system.}$

In particular, the design must include protective measures with respect to overvoltage, lightning, earth grounding and plant wiring in accordance with the relevant standards and the instructions specified in the System Manual (HI 800 141 E or HI 800 191 E).

4.1.2 Connecting the Digital Outputs

Use the following terminals to connect the digital outputs:

Terminal	Designation	Function	
1	LS+	Ground channel group	
2	1	Digital output 1	
3	2	Digital output 2	
4	3	Digital output 3	
5	4	Digital output 4 (for increased load)	
6	L-	Ground channel group	
Terminal	Designation	Function	
7	LS+	Ground channel group	
8	5	Digital output 5	
9	6	Digital output 6	
10	7	Digital output 7	
11	8	Digital output 8 (for increased load)	
12	L-	Ground channel group	

Table 25: Terminal Assignment for the Digital Outputs

Page 32 of 54 HI 800 145 E Rev. 1.01

F30 4 Start-Up

4.1.3 Mounting the F30 in Zone 2

(EC Directive 94/9/EC, ATEX)

The controller is suitable for mounting in zone 2. Refer to the corresponding declaration of conformity available on the HIMA website.

When mounting the device, observe the special conditions specified in the following section.

Special Conditions X

1. Mount the HIMatrix controller F30 in an enclosure that meets the EN 60079-15 requirements and achieves a type of protection of at least IP54, in accordance with EN 60529. Provide the enclosure with the following label:

Work is only permitted in the de-energized state

Exception:

If a potentially explosive atmosphere has been precluded, work can be also performed when the device is under voltage:

- 2 The enclosure in use must be able to safely dissipate the generated heat. Depending on the output load and supply voltage, the HIMatrix F30 has a power dissipation ranging between 12 W and 33 W.
- 3. Protect the HIMatrix F30 with a 10 A time-lag fuse.

 The F20 must be supplied with 24 VDC from a power supply unit with safe isolation. Use power supply units of type PELV or SELV only.
- 4. Applicable standards:

VDE 0170/0171 Part 16, DIN EN 60079-15: 2004-5 VDE 0165 Part 1, DIN EN 60079-14: 1998-08

Pay particular attention to the following sections:

DIN EN 60079-15:

Chapter 5 Design

Chapter 6 Terminals and cabling
Chapter 7 Air and creeping distances

Chapter 14 Connectors

DIN EN 60079-14:

Chapter 5.2.3 Equipment for use in zone 2
Chapter 9.3 Cabling for zones 1 and 2
Chapter 12.2 Equipment for zones 1 and 2

The module is additionally equipped with the label represented below:

HIMA

Paul Hildebrandt GmbH + Co KG A.-Bassermann-Straße 28, D-68782 Brühl

HIMatrix

F30

0 °C ≤ Ta ≤ 60 °C Special conditions X must be regarded!

Figure 8: Label for Ex Conditions

HI 800 145 E Rev. 1.01 Page 33 of 54

4 Start-Up F30

4.2 Configuration

The controller can be configured using a programming tool, SILworX or ELOP II Factory. Which programming tool should be used, depends on the revision status of the operating system (firmware):

- ELOP II Factory is required for operating system versions prior to 7.
- SILworX is required for operating system version 7 and beyond.

1 ELOP II Factory is required to load a new operating system (version 7 or beyond) into a controller with a CPU operating system version prior to 7. SILworX is then required once the loading procedure is completed.

4.3 Configuration with SILworX

In the Hardware Editor, the controller is represented like a base plate equipped with the following modules:

- Processor module (CPU)
- Communication module (COM)
- Input module (DI 20)
- Output module (DO 8)

Double-click the module to open the Detail View with the corresponding tabs. The tabs are used to assign the global variables configured in the user program to the system variables.

4.3.1 Parameters and Error Codes for the Inputs and Output

The following tables specify the system parameters that can be read and set for the inputs and outputs, including the corresponding error codes.

In the user program, the error codes can be read using the variables assigned within the logic.

The error codes can also be displayed in SILworX.

Page 34 of 54 HI 800 145 E Rev. 1.01

F30 4 Start-Up

4.3.2 Digital Inputs for F30

The following tables present the statuses and parameters for the input module (DI 20) in the same order as given in the Hardware Editor.

4.3.2.1 **Module** Tab

The **Module** tab contains the following system parameters.

System parameter	Data type	R/W	Description		
DI No. of Pulse	USINT	W	Number of pulsed outputs (supply outputs)		
Channel			Coding Description		
			0 No pulsed ou detection	itput planned for LS/LB ¹⁾	
			1 Pulsed output detection	it 1 planned for LS/LB ¹⁾	
			Pulsed output detection	its 1 and 2 planned for LS/LB ¹⁾	
			8 Pulsed output detection	its 18 planned for LS/LB ¹⁾	
			Pulsed outputs must not be used as safety-related outputs!		
DI Pulse Delay (10E-6s)	UINT	W	Waiting time for line control (detection of short-circuits or cross-circuits)		
DI Pulse Slot	UDINT	W	Pulse module slot (LS/LB ¹⁾ detection, set the value to 3		
DI.Error Code	WORD	R	Error codes for all digital inputs		
			Coding Description		
			0x0001 Fault within t	he digital inputs	
			0x0002 FTT test of te	est pattern faulty	
Module Error Code	WORD	R	Module error code		
			Coding Description		
			0x0000 I/O processir see other err	ng, if required with errors or codes	
			0x0001 No I/O proce	ssing (CPU not in RUN)	
			0x0002 No I/O proce	ssing during the booting test	
			0x0004 Manufacture	r interface operating	
			0x0010 No I/O proce	ssing: incorrect configuration	
				ssing: fault rate exceeded	
			0x0040/ No I/O proce 0x0080 plugged in	ssing: configured module not	
Module.SRS	[UDINT]	R	Slot number (System Rack S	lot)	
Module.Type	[UINT]	R	Type of module, target value: 0x00A5 [165 _{dec}]		
1) LS/LB (LS = short-	-circuit, LB =	open-c	rcuit)		

Table 26: SILworX - System Parameters for the Digital Inputs, Module Tab

HI 800 145 E Rev. 1.01 Page 35 of 54

4 Start-Up F30

4.3.2.2 **DO 20: Channels** Tab

The $\mbox{\bf DI 20: Channels}$ tab contains the following system parameters.

System parameter	Data type	R/W	Description	
Channel no.		R	Channel number, defined by default	
-> Error Code	BYTE	R	Error codes for the digital input channels	
[BYTE]			Coding	Description
			0x01	Fault in the digital input module
			0x10	Short-circuit of the channel
			0x80	Open-circuit between pulsed output DO and digital input DI, e.g.,
				Open-circuit
				Open switch I + low yeltage
-> Value [BOOL]	BOOL	R	Input values for the digital input channels	
value [BOOL]	BOOL	'`	0 = input de-energized	
			1 = input energized	
Pulse channel	USINT	W	Source channel for pulsed supply	
[USINT] ->			Coding	Description
			0	Input channel
			1	Pulse of the 1st DO channel
			2	Pulse of the 2nd DO channel
			8	Pulse of the 8th DO channel

Table 27: SILworX - System Parameters for the Digital Inputs, **DI 20: Channels** Tab

Page 36 of 54 HI 800 145 E Rev. 1.01

F30 4 Start-Up

4.3.3 Digital Outputs for F30

The following tables present the statuses and parameters for the output module (DO 8) in the same order as given in the Hardware Editor.

4.3.3.1 **Module** Tab

The **Module** tab contains the following system parameters.

System parameter	Data type	R/W	Description		
DO.Error Code	WORD	R	Error codes for all digital outputs		
			Coding	Description	
			0x0001	Fault within the digital outputs	
			0x0002	MOT test of safety shutdown returns a fault	
			0x0004	MOT test of auxiliary voltage returns a fault	
			0x0008	FTT test of test pattern faulty	
			0x0010	MOT test of output switch test pattern faulty	
			0x0020	MOT test of output switch test pattern (shutdown test of the outputs) faulty	
			0x0040	MOT test active shutdown via WD faulty	
			0x0200	All outputs are switched off, total current exceeded	
			0x0400	FTT test: 1st temperature threshold exceeded	
			0x0800	FTT test: 2nd temperature threshold exceeded	
			0x1000	FTT test: Monitoring of auxiliary voltage 1: Low voltage	
Module Error Code	WORD	R	Module error	code	
			Coding	Description	
			0x0000	I/O processing, if required with errors, see other error codes	
			0x0001	No I/O processing (CPU not in RUN)	
			0x0002	No I/O processing during the booting test	
			0x0004	Manufacturer interface operating	
			0x0010	No I/O processing: incorrect configuration	
			0x0020	No I/O processing: fault rate exceeded	
			0x0040/ 0x0080	No I/O processing: configured module not plugged in	
Module SRS	UDINT	R	Slot number (System Rack Slot)		
Module Type	UINT	R	Type of module, target value: 0x00B4 [180 _{dec}]		

Table 28: SILworX - System Parameters for the Digital Outputs, **Module** Tab

HI 800 145 E Rev. 1.01 Page 37 of 54

4 Start-Up F30

4.3.3.2 **DO 8: Channels** Tab

The **DO 8: Channels** tab contains the following system parameters.

System parameter	Data type	R/W	Description		
Channel no.		R	Channel number, defined by default		
-> Error Code	BYTE	R	Error codes for the digital output channels		
[BYTE]			Coding Description		
			0x01	Fault in the digital output module	
			0x02 Channel shutdown due to overload		
			0x04 Error while reading back the digital outputs		
			0x08	Error while reading back the status of the digital outputs	
Value [BOOL] ->	BOOL	W	Output value for DO channels:		
			1 = output energized		
			0 = output de-energized		
			Pulsed outputs must not be used as safety-related outputs!		

Table 29: SILworX - System Parameters for the Digital Outputs, **DO 8: Channels** Tab

Page 38 of 54 HI 800 145 E Rev. 1.01

F30 4 Start-Up

4.4 Configuring a Controller Using ELOP II Factory

4.4.1 Configuring the Inputs and Outputs

The signals previously defined in the Signal Editor (Hardware Management) are assigned to the individual channels (inputs and outputs) using ELOP II Factory. Refer to the System Manual for Compact Systems or the online help for more details.

The following chapter describes the system signals used for assigning signals in the controller.

4.4.2 Signals and Error Codes for the Inputs and Output

The following tables specify the system signals that can be read and set for the inputs and outputs, including the corresponding error codes.

In the user program, the error codes can be read using the signals assigned within the logic.

The error codes can also be displayed in ELOP II Factory.

HI 800 145 E Rev. 1.01 Page 39 of 54

4 Start-Up F30

4.4.3 Digital Inputs for F30

System Signal	R/W	Description Park Olation			
Mod.SRS [UDINT]	R	Slot number (System Rack Slot)			
Mod. Type [UINT]	R	Type of module, target value: 0x00A5 [165 _{dec}]			
Mod. Error Code	R	Module error code			
[WORD]		Coding Description			
		0x0000 I/O processing, if required with errors			
		see other error codes			
		0x0001 No I/O processing (CPU not in RUN)			
		0x0002 No I/O processing during the booting test			
		0x0004 Manufacturer interface operating			
		0x0010 No I/O processing: incorrect configuration			
		0x0020 No I/O processing: fault rate exceeded			
		0x0040/ No I/O processing: configured module not plugged in			
		0x0080			
DI.Error code	R	Error codes for all digital inputs			
[WORD]		Coding Description			
		0x0001 Fault within the digital inputs			
		0x0002 FTT test of test pattern faulty			
DI[xx].Error code	R	Error codes for the digital input channels			
[BYTE]		Coding Description			
		0x01 Fault in the digital input module			
		0x10 Short-circuit of the channel			
		0x80 Open-circuit between pulsed output DO and digital			
		input DI, e.g.,			
		Open-circuit			
		• Open switch			
DIE 11/ L EDGOLI	_	Laut value for the digital input shaped			
DI[xx].Value [BOOL]	R	Iput values for the digital input channels			
		0 = input de-energized 1 = input energized			
DI No. of Pulse	W	Number of pulsed outputs (supply outputs)			
Channel [USINT]	**	Coding Description			
		0 No pulsed output planned for LS/LB ¹⁾ detection			
		1 Pulsed output 1 planned for LS/LB ¹⁾ detection			
		2 Pulsed outputs 1 and 2 planned for LS/LB ¹ detection			
		8 Pulsed outputs 18 planned for LS/LB ¹⁾ detection			
DI Dulos Clat	10/	Pulsed outputs must not be used as safety-related outputs! Pulse module slot (LS/LB ¹⁾ detection), set the value to 2			
DI Pulse Slot [UDINT]	W				
DI[xx].	W	Source channel for pulsed supply			
Pulse Channel		Coding Description			
[USINT] 0		'			
		1 Pulse of the 1st DO channel			
		2 Pulse of the 2nd DO channel			
		8 Pulse of the 8th DO channel			

Page 40 of 54 HI 800 145 E Rev. 1.01

F30 4 Start-Up

System Signal	R/W	Description		
DI pulse delay (10E-6s) [UINT]	W	Waiting time for line control (detection of short-circuits or cross-circuits)		
1) LS/LB (LS = short-circuit, LB = open-circuit)				

Table 30: ELOP II Factory - Digital Input System Signals

HI 800 145 E Rev. 1.01 Page 41 of 54

4 Start-Up F30

4.4.4 Digital Outputs for F30

System Signal	R/W	Description			
Mod.SRS [UDINT]	R	Slot number (System Rack Slot)			
Mod. Type [UINT]	R	Type of module, target value: 0x00B4 [180 _{dec}]			
Mod. Error Code R		Module error code			
[WORD]		Coding	Description		
		0x0000	I/O processing, if required with errors, see other error codes		
		0x0001	No I/O processing (CPU not in RUN)		
		0x0002	No I/O processing during the booting test		
		0x0004	Manufacturer interface operating		
		0x0010	No I/O processing: incorrect configuration		
		0x0020	No I/O processing: fault rate exceeded		
		0x0040/ 0x0080	No I/O processing: configured module not plugged in		
DO.Error code	R	Error codes fo	r all digital outputs		
[WORD]		Coding	Description		
		0x0001	Fault within the digital outputs		
		0x0002	MOT test of safety shutdown provides a fault		
		0x0004	MOT test of auxiliary voltage provides a fault		
		0x0008	FTT test of test pattern faulty		
		0x0010	MOT test of output switch test pattern faulty		
		0x0020	MOT test of output switch test pattern (shutdown test of the outputs) faulty		
		0x0040	MOT test active shutdown via WD faulty		
		0x0200	All outputs are switched off, total current exceeded		
		0x0400	FTT test: 1st temperature threshold exceeded		
		0x0800	FTT test: 2nd temperature threshold exceeded		
		0x1000	FTT test: Monitoring of auxiliary voltage 1: Low voltage		
DO[xx].Error Code	R	Error codes fo	r the digital output channels		
[BYTE]		Coding	Description		
		0x01	Fault in the digital output module		
		0x02	Channel shutdown due to overload		
		0x04	Error while reading back the digital outputs		
		0x08	Error while reading back the status of the digital outputs		
DO[xx].Value	W	Output value for DO channels:			
[BOOL]		1 = output energized			
		0 = output de-energized			
		Pulsed outputs must not be used as safety-related outputs!			

Table 31: ELOP II Factory - Digital Output System Signals

Page 42 of 54 HI 800 145 E Rev. 1.01

F30 5 Operation

5 Operation

The F30 controller is ready to operate. No specific monitoring is required for the controller.

5.1 Handling

Handling of the controller during operation is not required.

5.2 Diagnosis

A first diagnosis results from evaluating the LEDs, see Chapter 3.4.1.

The device's diagnostic history can also be read using the programming tool.

HI 800 145 E Rev. 1.01 Page 43 of 54

6 Maintenance F30

6 Maintenance

No maintenance measures are required during normal operation.

If a device or module fails, replace it with an identical type or an alternative type which is admitted by HIMA.

Only the manufacturer is authorized to repair the device/module.

6.1 Faults

Refer to Chapter 3.1.1.1, for more information on the fault reaction of digital inputs.

Refer to Chapter 3.1.2.1, for more information on the fault reaction of digital outputs.

6.1.1 Operating System Version 6.42 and Beyond

If the test harnesses detect faults in the processor system, the device is rebooted. If a further internal fault occurs within the first minute after the reboot, the device enters the STOP_INVALID state and will remain in this state. This means that the input signals are no longer processed by the device and the outputs switch to the safe, de-energized state. The evaluation of diagnostics provides information on the fault cause.

6.1.2 Operating System Versions Prior to 6.42

If the test harnesses detect faults in the processor system, the module automatically enters the ERROR STOP state and will remain in this state. This means that the input signals are no longer processed by the device and the outputs switch to the safe, de-energized state. The evaluation of diagnostics provides information on the fault cause.

6.2 Maintenance Measures

The following measures are rarely required for the processor module:

- Loading the operating system, if a new version is required
- Executing the proof test

6.2.1 Loading the Operating System

HIMA is continuously improving the operating system of the devices. HIMA recommends to use system downtimes to load a current version of the operating system into the devices.

Refer to the release list to check the consequences of the new operation system version on the system!

Load the operating system using the programming tool.

Prior to loading the operating system, the device must be in STOP (displayed in the programming tool). Otherwise, stop the device.

For more information, refer to the programming tool documentation.

6.2.2 Proof Test

Test the HIMatrix devices and modules every 10 years. For more information, refer to the Safety Manual (HI 800 003 E).

Page 44 of 54 HI 800 145 E Rev. 1.01

F30 7 Decommissioning

7 Decommissioning

Remove the supply voltage to decommission the device. Afterwards pull out the pluggable screw terminal connector blocks for inputs and outputs and the Ethernet cables.

HI 800 145 E Rev. 1.01 Page 45 of 54

8 Transport F30

8 Transport

To avoid mechanical damage, HIMatrix components must be transported in packaging.

Always store HIMatrix components in their original product packaging. This packaging also provides protection against electrostatic discharge. Note that the product packaging alone is not suitable for transmission.

Page 46 of 54 HI 800 145 E Rev. 1.01

F30 9 Disposal

9 Disposal

Industrial customers are responsible for correctly disposing of decommissioned HIMatrix hardware. Upon request, a disposal agreement can be arranged with HIMA.

All materials must be disposed of in an ecologically sound manner.

HI 800 145 E Rev. 1.01 Page 47 of 54

9 Disposal F30

Page 48 of 54 HI 800 145 E Rev. 1.01

F30 Appendix

Appendix

Glossary

Term	Description
ARP	Address Resolution Protocol: Network protocol for assigning the network addresses
	to hardware addresses
Al	Analog Input
COM	COMmunication module
CRC	Cyclic Redundancy Check
DI	Digital Input
DO	Digital Output
ELOP II Factory	Programming tool for HIMatrix systems
EMC	ElectroMagnetic Compatibility
EN	European Norm
ESD	ElectroStatic Discharge
FB	FieldBus
FBD	Function Block Diagrams
FTA	Field Termination Assembly
FTT	Fault Tolerance Time
ICMP	Internet Control Message Protocol: Network protocol for status or error messages
IEC	International Electrotechnical Commission
MAC address	Media Access Control address: Hardware address of one network connection
PADT	Programming And Debugging Tool (in accordance with IEC 61131-3),
DE	PC with SILworX or ELOP II Factory
PE	Protective Earth
PELV	Protective Extra Low Voltage
PES	Programmable Electronic System
PFD	Probability of Failure on Demand, probability of failure on demand of a safety function
PFH	Probability of Failure per Hour, probability of a dangerous failure per hour
R	Read: The system variable or signal provides value, e.g., to the user program
Rack ID	Base plate identification (number)
Non-reactive	Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed <i>non-reactive</i> if it does not distort the signals of the other input circuit.
R/W	Read/Write (column title for system variable/signal type)
SB	System Bus (module)
SELV	Safety Extra Low Voltage
SFF	Safe Failure Fraction, portion of safely manageable faults
SIL	Safety Integrity Level (in accordance with IEC 61508)
SILworX	Programming tool for HIMatrix systems
SNTP	Simple Network Time Protocol (RFC 1769)
S.R.S	System.Rack.Slot addressing of a module
SW	Software
TMO	TiMeOut
W	Write: System variable/signal is provided with value, e.g., from the user program
WD	WatchDog: Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.
WDT	WatchDog Time
	<u> </u>

HI 800 145 E Rev. 1.01 Page 49 of 54

Appendix F30

Index of I	Figures	
Figure 1:	Connections to Safety-Related Digital Inputs	13
Figure 2:	Line Control	14
Figure 3:	Connecting Actuators to Outputs	15
Figure 4:	Sample Type Label	18
Figure 5:	Front View	19
Figure 6:	Block Diagram	19
Figure 7:	Sample MAC Address Label	23
Figure 8:	Label for Ex Conditions	33

Page 50 of 54 HI 800 145 E Rev. 1.01

F30 Appendix

Index of	Tables	
Table 1:	HIMatrix System Variants	7
Table 2:	Additional Relevant Documents	8
Table 3:	Environmental Requirements	11
Table 4:	Part Numbers	17
Table 5:	Operating Voltage LED	20
Table 6:	System LEDs	21
Table 7:	Ethernet Indicators	22
Table 8:	I/O LEDs	22
Table 9:	Ethernet Interfaces Properties	23
Table 10:	Network Ports (UDP Ports) in Use	23
Table 11:	Network Ports (TCP Ports) in Use	24
Table 12:	Connections for Fieldbus Communication	24
Table 13:	Pin Assignment of D-sub Connectors FB1 and FB2 for PROFIBUS DP	24
Table 14:	Pin Assignment of the D-sub Connectors FB1 and FB2 for RS485	25
Table 15:	Pin Assignment of the D-sub Connectors FB1 and FB2 for RS232	25
Table 16:	Pin Assignment of the D-sub Connectors FB1 and FB2 for RS422	25
Table 17:	Pin Assignment of the D-sub Connectors FB1 and FB2 for INTERBUS	26
Table 18:	Pin Assignment of D-sub Connector FB3 for Modbus	26
Table 19:	Product Data	28
Table 20:	Specifications for the Digital Inputs	28
Table 21:	Specifications for the Digital Outputs	29
Table 22:	Product Data F30 011	29
Table 23:	Certificates	30
Table 24:	Terminal Assignment for the Digital Inputs	31
Table 25:	Terminal Assignment for the Digital Outputs	32
Table 26:	SILworX - System Parameters for the Digital Inputs, Module Tab	35
Table 27:	SILworX - System Parameters for the Digital Inputs, DI 20: Channels Tab	36
Table 28:	SILworX - System Parameters for the Digital Outputs, Module Tab	37
Table 29:	SILworX - System Parameters for the Digital Outputs, DO 8: Channels Tab	38
Table 30:	ELOP II Factory - Digital Input System Signals	41
Table 31:	ELOP II Factory - Digital Output System Signals	42

HI 800 145 E Rev. 1.01 Page 51 of 54

Appendix F30

Index

diagnosis43	part number	17
fault reaction	safe ethernet	23
digital inputs14	specifications	29
digital outputs15	•	17
line control	surge	33

Page 52 of 54 HI 800 145 E Rev. 1.01

HIMA Paul Hildebrandt GmbH + Co KG
P.O. Box 1261
68777 Brühl, Germany
Tel: +49 6202 709-0

Fax: +49 6202 709-107