

COMMUNICATION

HIMax®

Communication Manual

 HI 801 101 E Rev. 3.00 (0944)

All HIMA products mentioned in this manual are protected by the HIMA trade-mark. Unless noted
otherwise, this also applies to other manufacturers and their respective products referred to herein.

All of the instructions and technical specifications in this manual have been written with great care and
effective quality assurance measures have been implemented to ensure their validity. For questions,
please contact HIMA directly. HIMA appreciates any suggestion on which information should be
included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material
without prior notice.

For further information, refer to the CD-ROM and our website http://www.hima.de and
http://www.hima.com.

© Copyright 2009, HIMA Paul Hildebrandt GmbH + Co KG

All rights reserved

Contact
HIMA contact details:

HIMA Paul Hildebrandt GmbH + Co KG

P.O. Box 1261

68777 Brühl, Germany

Tel: +49 6202 709-0

Fax: +49 6202 709-107

E-mail: info@hima.com

Communication Table of Contents

HI 801 101 E Rev. 3.00 Page 3 of 344

Table of Contents
1 Introduction .. 11
1.1 Structure and Use of this Manual... 11
1.2 Target Audience... 12
1.3 Formatting Conventions ... 12
1.3.1 Safety Notes .. 12
1.3.2 Operating Tips ... 13

2 Safety .. 14
2.1.1 Operating Requirements.. 14
2.2 Residual Risk ... 17
2.3 Safety Precautions... 17
2.4 Emergency Information... 17

3 Product Description .. 18
3.1 Safety-Related Protocol (safeethernet).. 18
3.2 Standard Protocols.. 19
3.3 Redundancy ... 20
3.4 Structure of the HIMax COM Module Part Number ... 20
3.5 Protocol Registration and Activation... 22
3.6 Ethernet Interfaces .. 23
3.6.1 Ethernet Interfaces Properties ... 23
3.6.2 Configuring the Ethernet Interfaces ... 24
3.6.3 Network Ports Used for Ethernet Communication ... 29
3.7 Fieldbus Interfaces .. 29
3.7.1 Pin Assignment of D-SUB Connectors FB1 and FB2 .. 30

4 safeethernet .. 31
4.1 What is safeethernet?.. 32
4.2 Configuring a Redundant safeethernet Connection... 34
4.3 safeethernet Editor .. 37
4.4 Detail View of the safeethernet Editor ... 39
4.4.1 Tab: System Variables... 39
4.5 Possible safeethernet Connections ... 42
4.5.1 Mono safeethernet Connection (Channel 1) .. 42
4.5.2 Redundant safeethernet Connection (Channel 1 and Channel 2) 42
4.5.3 Permitted Combinations... 43
4.6 safeethernet Parameters ... 44
4.6.1 Maximum Cycle Time (Minimum Watchdog Time) of the HIMax Controller 44
4.6.2 Receive Timeout .. 45
4.6.3 Response Time.. 45
4.6.4 Sync/Async .. 46
4.6.5 ResendTMO... 46
4.6.6 Acknowledge Timeout.. 46
4.6.7 Production Rate ... 46
4.6.8 Queue .. 47

Table of Contents Communication

Page 4 of 344 HI 801 101 E Rev. 3.00

4.7 Worst Case Reaction Time for safeethernet .. 48
4.7.1 Calculating the Worst Case Reaction Time of Two HIMax Controllers 48
4.7.2 Calculating the Worst Case Reaction Time in Connection with One HIMatrix PES49
4.7.3 Calculating the Worst Case Reaction Time with two HIMatrix Controllers or RIOs 49
4.7.4 Calculating the Worst Case Reaction Time with Two HIMax and One HIMatrix PES

...50
4.7.5 safeethernet Profile ..51
4.7.6 Profile I (Fast & Cleanroom)...51
4.7.7 Profile II (Fast & Noisy)...52
4.7.8 Profile III (Medium & Cleanroom) ...52
4.7.9 Profile IV (Medium & Noisy) ... 53
4.7.10 Profile V (Slow & Cleanroom)... 53
4.7.11 Profile VI (Slow & Noisy) ..54
4.8 Cross-Project Communication.. 55
4.8.1 Variants for Cross-Project Communication .. 56
4.9 Cross-Project Communication between SILworX and ELOP II Factory.......... 57
4.9.1 Configuring the HIMax in a SILworX Project .. 57
4.9.2 Configuring a HIMatrix in an ELOP II Factory Project .. 61
4.10 Control Panel (safeethernet) ...63
4.10.1 View Box (safeethernet Connection) ... 64

5 PROFINET IO ... 65
5.1 PROFINET IO Function Blocks..65
5.2 HIMA PROFINET IO Controller ..66
5.3 System Requirements..66
5.4 PROFINET IO Example...67
5.4.1 Creating a HIMA PROFINET IO Controller in SILworX.. 67
5.5 Menu Function in the PROFINET IO Controller ...69
5.5.1 Properties ...69
5.6 Menu Functions for PROFINET IO Device (within the Controller) 70
5.6.1 Properties ...70
5.6.2 DAP Module (Device Access Point Module) .. 71
5.6.3 Input/Output PROFINET IO Modules ...71
5.6.4 Input Submodule ..72
5.6.5 Submodule Output ...73
5.6.6 Input and Output Submodule ...75
5.6.7 Application Relation..77
5.6.8 Alarm CR..78
5.6.9 Input CR ...79
5.6.10 Output CR ..80
5.7 HIMA PROFINET IO Device..81
5.8 System Requirements..81
5.9 PROFINET IO Example...82
5.9.1 Configuring the PROFINET IO Device in SILworX... 82
5.9.2 Creating a HIMA PROFINET IO Controller in SILworX.. 85
5.9.3 Menu Function Properties ..88
5.9.4 PROFINET IO Modules..90

Communication Table of Contents

HI 801 101 E Rev. 3.00 Page 5 of 344

6 PROFIBUS DP .. 92
6.1 HIMA PROFIBUS DP Master.. 93
6.1.1 Creating a HIMA PROFIBUS DP Master ... 93
6.2 PROFIBUS DP: Example ... 94
6.2.1 Configuring the PROFIBUS DP Slave ... 94
6.2.2 Configuring the PROFIBUS DP Master ... 96
6.3 Menu Functions of the PROFIBUS DP Master .. 103
6.3.1 Edit... 103
6.3.2 Menu Function 'Properties' .. 104
6.4 PROFIBUS DP Bus Access Method ... 108
6.4.1 Master/Slave Protocol.. 108
6.4.2 Token Protocol... 108
6.4.3 Target Token Rotation Time (Ttr) .. 108
6.4.4 Calculating the Target Token Rotation Time (Ttr).. 109
6.5 Isochronous PROFIBUS DP Cycle (DP V2 and Higher).................................. 111
6.5.1 Isochronous Mode (DP V2 and higher).. 112
6.5.2 Isochronous Sync Mode (DP V2 and higher)... 112
6.5.3 Isochronous Freeze Mode (DP V2 and higher) ... 112
6.6 Menu Functions of the PROFIBUS DP Slave (in the Master) 113
6.6.1 Creating a PROFIBUS DP Slave (in the Master) ... 113
6.6.2 Edit... 113
6.6.3 Properties... 114
6.7 Importing the GSD File .. 119
6.8 Configuring User Parameters ... 120
6.9 PROFIBUS Function Blocks ... 122
6.9.1 MSTAT Function Block .. 123
6.9.2 RALRM Function Block.. 126
6.9.3 RDIAG Function Block ... 130
6.9.4 RDREC Function Block.. 134
6.9.5 SLACT Function Block... 137
6.9.6 WRREC Function Block... 140
6.10 PROFIBUS Auxiliary Function Blocks ... 143
6.10.1 ACTIVE Auxiliary Function Block... 143
6.10.2 Auxiliary Function Block ALARM ... 144
6.10.3 DEID Auxiliary Function Block ... 145
6.10.4 ID Auxiliary Function Block .. 146
6.10.5 NSLOT Auxiliary Function Block.. 147
6.10.6 SLOT Auxiliary Function Block .. 147
6.10.7 STDDIAG Auxiliary Function Block.. 148
6.11 Error Codes of the Function Blocks .. 150
6.12 Control Panel (PROFIBUS DP Master) ... 151
6.12.1 Context Menu (PROFIBUS DP Master) ... 151
6.12.2 View Box (PROFIBUS Master) .. 152
6.12.3 PROFIBUS DP Master State ... 153
6.12.4 Behavior of the PROFIBUS DP Master ... 153
6.12.5 Function of the FBx LED in the PROFIBUS Master... 154
6.13 HIMA PROFIBUS DP Slave.. 155
6.13.1 Creating a HIMA PROFIBUS DP Slave ... 155

Table of Contents Communication

Page 6 of 344 HI 801 101 E Rev. 3.00

6.14 Menu Functions of the PROFIBUS DP Slave ...156
6.14.1 Edit ...156
6.14.2 Properties ...157
6.15 Control Panel (Profibus DP Slave)..160
6.15.1 Context Menu (PROFIBUS DP Slave) ... 160
6.15.2 View Box (PROFIBUS DP Slave)... 160
6.16 Function of the FBx LED in the PROFIBUS Slave ...161

7 Modbus ..162
7.1 HIMA Modbus Master ...163
7.2 Modbus Example..164
7.2.1 Configuring the Modbus TCP Slave ... 164
7.2.2 Configuring the Modbus TCP Master ...166
7.3 Example of Alternative Register/Bit Addressing... 167
7.4 Menu Functions of the HIMA Modbus Master..169
7.4.1 Edit ...169
7.4.2 Properties ...170
7.5 Modbus Function Codes (Request Telegrams) ...172
7.5.1 Modbus Standard Function Codes...172
7.5.2 HIMA-Specific Function Codes...173
7.5.3 Read Request Telegrams...175
7.5.4 Write Request Telegram ..177
7.5.5 Ethernet Slaves (TCP/UDP Slaves) ... 179
7.5.6 System Variables for TCP/UDP Slaves..180
7.5.7 TCP/UDP Slave Properties .. 180
7.5.8 Modbus Gateway (TCP/UDP Gateway) ... 182
7.5.9 Gateway Properties..184
7.5.10 System Variables for the Gateway Slave ... 184
7.5.11 Gateway Slave Properties ..184
7.5.12 Serial Modbus ..185
7.5.13 Serial Modbus Properties ...186
7.5.14 System Variables for the Modbus Slave... 186
7.5.15 Modbus Slave Properties ...187
7.6 Control Panel (Modbus Master) ..187
7.6.1 Context Menu (Modbus Master) ...188
7.6.2 View Box (Modbus Master) .. 188
7.7 Control Panel (Modbus Master->Slave)..188
7.8 FBx LED Function in the Modbus Master ..189
7.9 HIMA Modbus Slave ...190
7.9.1 Configuring the Modbus TCP Slave ... 190
7.9.2 Configuring the Redundant Modbus TCP Slave... 191
7.9.3 Rules for Redundant Modbus TCP Slaves...192
7.10 Menu Functions of the HIMA Modbus Slave Set ...193
7.10.1 Modbus Slave Set Properties...193
7.10.2 Register Variable..194
7.10.3 Bit Variables ...194
7.10.4 Assigning Send/Receive Variables... 195
7.10.5 Modbus Slave Set System Variables ...195
7.10.6 Modbus Slave and Modbus Slave Redundant ... 195
7.10.7 Modbus Function Codes ..198

Communication Table of Contents

HI 801 101 E Rev. 3.00 Page 7 of 344

7.10.8 HIMA-Specific Function Codes .. 200
7.11 Addressing Modbus using Bit and Register ... 202
7.11.1 Register Area ... 202
7.11.2 Bit Area .. 203
7.12 Offsets for Alternative Modbus Addressing.. 204
7.12.1 Access to the Register Variables in the Bit Area of the Modbus Slave................ 205
7.12.2 Access to the Bit Variables in the Register Area of the Modbus Slave................ 206
7.13 Control Panel (Modbus Slave) .. 207
7.13.1 Context Menu (Modbus Slave) ... 207
7.13.2 View Box (Modbus Slave).. 208
7.13.3 View Box (Master Data) ... 208
7.14 FBx LED Function in the Modbus Slave .. 209
7.14.1 Error Codes of the Modbus TCP/IP Connection .. 209

8 Send & Receive TCP ...210
8.1 System Requirements ... 210
8.1.1 Creating a S&R TCP Protocol.. 210
8.2 Example: S&R TCP Configuration.. 211
 S&R TCP Configuration of the Siemens Controller SIMATIC 300....................... 213

8.2.1 S&R TCP Configuration of the HIMax Controller ... 217
8.3 TCP S&R Protocols Menu Functions ... 219
8.3.1 Edit... 219
8.3.2 Properties... 219
8.4 Menu Functions for TCP Connection... 221
8.4.1 Edit... 221
8.4.2 System Variables ... 221
8.4.3 Properties... 222
8.5 Data Exchange ... 223
8.5.1 TCP Connections... 224
8.5.2 Cyclic Data Exchange.. 225
8.5.3 Acyclic Data Exchange with Function Blocks .. 225
8.5.4 Simultaneous Cyclic and Acyclic Data Exchange.. 225
8.5.5 Flow Control... 225
8.6 Third-Party Systems with Pad Bytes ... 226
8.7 S&R TCP Function Blocks .. 227
8.7.1 TCP_Reset .. 228
8.7.2 TCP_Send ... 231
8.7.3 TCP_Receive... 234
8.7.4 TCP_ReceiveLine .. 238
8.7.5 TCP_ReceiveVar ... 242
8.8 Control Panel (Send/Receive over TCP) .. 247
8.8.1 Context Menu (Send/Receive Protocol)... 247
8.8.2 View Box (Send/Receive Protocol) .. 247
8.8.3 View Box (Send/Receive Server)... 247
8.8.4 Error Code of the TCP Connection .. 248
8.8.5 Additional Error Code Table for the Function Blocks ... 249
8.8.6 Connection State ... 249
8.8.7 Partner Connection State... 249

Table of Contents Communication

Page 8 of 344 HI 801 101 E Rev. 3.00

9 SNTP Protocol ..250
9.1 SNTP Client...250
9.2 SNTP Client (Server Information)..252
9.3 SNTP Server..253

10 X OPC Server..254
10.1 Equipment and System Requirements...254
10.2 X-OPC Server Properties ...255
10.3 HIMax Controller Properties..256
10.4 Actions Required as a Result of Changes ... 257
10.5 Forcing Global Variables on I/O Modules ..257
10.6 Configuring an OPC Server Connection ..258
10.6.1 Software required: ..258
10.6.2 Requirements for Operating the X-OPC Server: ... 258
10.6.3 Installation on Host PC...259
10.6.4 Configuring the OPC Server in SILworX .. 262
10.6.5 Settings for the OPC Server in the safeethernet Editor.. 263
10.6.6 Configuring the X-OPC Data Access Server in SILworX...................................... 263
10.6.7 Configuring the X-OPC Alarm&Event Server in SILworX..................................... 266
10.6.8 Configuring the Views and Priorities in SILworX .. 269
10.7 Alarm & Event Editor..272
10.7.1 Boolean Events ..272
10.7.2 Scalar Events ..273
10.8 Parameters for the X-OPC Server Properties .. 276
10.8.1 OPC Server Set..276
10.8.2 OPC Server ..280
10.9 Uninstalling the X-OPC Server .. 280

11 ComUserTask ...281
11.1 System Requirements..281
11.1.1 Creating a ComUserTask...281
11.2 Requirements ...282
11.3 Abbreviations ...282
11.4 CUT Interface in SILworX...283
11.4.1 Schedule Interval [ms] ..283
11.4.2 Scheduling Preprocessing.. 283
11.4.3 Scheduling Postprocessing ..283
11.4.4 STOP_INVALID_CONFIG..283
11.4.5 CUT Interface Variables (CPU<->CUT) ...284
11.5 CUT Functions..287
11.5.1 COM User Callback Functions ... 287
11.5.2 COM User Library Functions.. 287
11.5.3 Header Files ...287
11.5.4 Code/Data Area and Stack for CUT ...287
11.5.5 Start Function CUCB_TaskLoop ..288
11.5.6 RS485 / RS232 IF Serial Interfaces ...289
11.5.7 UDP/TCP Socket IF ...297
11.5.8 Timer-IF..311
11.5.9 Diagnosis..312

Communication Table of Contents

HI 801 101 E Rev. 3.00 Page 9 of 344

11.6 Installing the Development Environment .. 313
11.6.1 Installing the Cygwin Environment... 313
11.6.2 Installing the GNU Compiler .. 315
11.7 Creating New CUT Projects .. 317
11.7.1 CUT Makefiles ... 318
11.7.2 Adapting C Source Codes ... 320
11.7.3 Implementing the ComUserTask in the Project ... 324
11.7.4 Faults while Loading a Configuration with CUT ... 327

12 General ..328
12.1 Configuring the Function Blocks ... 328
12.1.1 Purchasing Function Block Libraries.. 328
12.1.2 Configuring the Function Blocks in the User Program ... 328
12.1.3 Configuring the Function Blocks in the SILworX Structure Tree.......................... 329
12.2 Maximum Communication Time Slice ... 331

Appendix ..332
Glossary.. 332
Index of Figures ... 333
Index of Tables... 335
Index.. 341

Table of Contents Communication

Page 10 of 344 HI 801 101 E Rev. 3.00

Communication 1 Introduction

HI 801 101 E Rev. 3.00 Page 11 of 344

1 Introduction
The communication manual describes the characteristics and configuration of the
communication protocols of the safety-related HIMax control system.

Using the provided protocols, HIMax controllers can be connected with one another or with
controllers from other manufacturers.

Knowledge of regulations and the proper technical implementation of the instructions
detailed in this manual performed by qualified personnel are prerequisites for planning,
engineering, programming, installing, starting up, operating and maintaining the HIMax
automation devices.

HIMA will not be held liable for severe personal injuries, damage to property or the
surroundings caused by any of the following: unqualified personnel working on or with the
devices, de-activation or bypassing of safety functions, or failure to comply with the
instructions detailed in this manual (resulting in faults or impaired safety functionality).

HIMax automation devices have been developed, manufactured and tested in compliance
with the pertinent safety standards and regulations. They may only be used for the intended
applications under the specified environmental conditions.

1.1 Structure and Use of this Manual
The content of this manual is part of the hardware description of the HIMax programmable
electronic system.

This manual is organized in the following main chapters:

 Introduction
 Safety
 Product Description
 Start-up
 Operation
 Repairs
 Decommissioning
 Transport
 Disposal

Additionally, the following documents must be taken into account:

Name Content Document no.
HIMax
System Manual

Hardware description of the
HIMax system

HI 801 001 E

HIMax
Safety Manual

Safety functions of the HIMax
systems

HI 801 003 E

HIMax
Communication Manual

Description of communication
and protocols

HI 801 101 E

First Steps Introduction to SILworX HI 801 103 E

Table 1: Additional Valid Manuals

The latest manuals can be downloaded from the HIMA website www.hima.com. The
revision index on the footer can be used to compare the current version of existing manuals
with the Internet edition.

1 Introduction Communication

Page 12 of 344 HI 801 101 E Rev. 3.00

1.2 Target Audience
This document addresses system planners, configuration engineers, programmers of
automation devices and personnel authorized to implement, operate and maintain the
devices and systems. Specialized knowledge of safety-related automation systems is
required.

1.3 Formatting Conventions
To ensure improved readability and comprehensibility, the following fonts are used in this
document:

Bold: To highlight important parts
Names of buttons, menu functions and tabs that can be clicked and
used in SILworX.

Italics: For parameters and system variables
Courier Literal user inputs
RUN Operating state are designated by capitals
Chapter 1.2.3 Cross references are hyperlinks even though they are not

particularly marked. When the cursor hovers over a hyperlink, it
changes its shape. Click the hyperlink to jump to the corresponding
position.

Safety notes and operating tips are particularly marked.

1.3.1 Safety Notes
The safety notes are represented as described below.
These notes must absolutely be observed to reduce the risk to a minimum. The content is
structured as follows:

 Signal word: danger, warning, caution, notice
 Type and source of danger
 Consequences arising from the danger
 Danger prevention

The signal words have the following meanings:

 Danger indicates hazardous situation which, if not avoided, will result in death or serious
injury.

 Warning indicates hazardous situation which, if not avoided, could result in death or
serious injury.

 Warning indicates hazardous situation which, if not avoided, could result in minor or
modest injury.

 Notice indicates a hazardous situation which, if not avoided, could result in property
damage.

 SIGNAL WORD

Type and source of danger!
Consequences arising from the danger
Danger prevention

Communication 1 Introduction

HI 801 101 E Rev. 3.00 Page 13 of 344

 NOTICE

Type and source of damage!
Damage prevention

1.3.2 Operating Tips
Additional information is structured as presented in the following example:

i The text corresponding to the additional information is located here.

Useful tips and tricks appear as follows:

TIP The tip text is located here.

2 Safety Communication

Page 14 of 344 HI 801 101 E Rev. 3.00

2 Safety
The following safety information, notes and instructions must be strictly observed. The
product may only be used if all guidelines and safety instructions are adhered to.

This product is operated in accordance with SELV or PELV. No imminent danger results
from the module itself. The use in Ex-Zone is permitted if additional measures are taken.

2.1.1 Operating Requirements
The devices have been developed to meet the following standards for EMC, climatic and
environmental requirements:

Standard Content
EC/EN 61131-2 Programmable controllers, Part 2

Equipment requirements and tests
IEC/EN 61000-6-2 EMC

Generic standards, Parts 6-2
Immunity for industrial environments

IEC/EN 61000-6-4 Electromagnetic Compatibility (EMC)
Generic emission standard, industrial environments

Table 2: Standards for EMC, Climatic and Environmental Requirements

When using the safety-related HIMax control systems, the following general requirements
must be met:

Requirement type Requirement content
Protection class Protection class II in accordance with IEC/EN 61131-2
Pollution Pollution degree II in accordance with IEC/EN 61131-2
Altitude < 2000 m
Enclosure Standard: IP 20

If required by the relevant application standards (e.g., EN 60204, EN
954-1), the device must be installed in an enclosure of the specified
protection class (e.g., IP 54).

Table 3: General requirements

Climatic Requirements
The following table lists the key tests and thresholds for climatic requirements:

IEC/EN 61131-2 Climatic tests
Operating temperature: 0...+60 °C
(test limits: -10...+70 °C)
Storage temperature: -40...+85 °C
Dry heat and cold resistance tests:
+70 °C / -25 °C, 96 h, power supply not connected
Temperature change, resistance and immunity test:
-25 °C / +70 °C und 0 °C / +55 °C,
power supply not connected

Cyclic damp-heat withstand tests:
+25 °C / +55 °C, 95 % relative humidity,
power supply not connected

Table 4: Climatic Requirements

Communication 2 Safety

HI 801 101 E Rev. 3.00 Page 15 of 344

Mechanical Requirements
The following table lists the key tests and thresholds for mechanical requirements:

IEC/EN 61131-2 Mechanical tests
Vibration immunity test:
5...9 Hz / 3.5 mm
9...150 Hz, 1 g, EUT in operation, 10 cycles per axis

Shock immunity test:

15 g, 11 ms, EUT in operation, 2 cycles per axis

Table 5: Mechanical Tests

EMC Requirements
Higher interference levels are required for safety-related systems. HIMax systems meet
these requirements in accordance with IEC 62061 and IEC 61326-3-1 (DIS). See column
"Criterion FS“ (Functional Safety).

IEC/EN 61131-2 Interference immunity tests Criterion
FS

IEC/EN 61000-4-2 ESD test: 6 kV contact, 8 kV air discharge -
IEC/EN 61000-4-3 RFI test (10 V/m): 26 MHz...1 GHz, 80 % AM

RFI test (20 V/m): 26 MHz...2.7 GHz, 80 % AM: EN
298

-
20 V/M

IEC/EN 61000-4-4 Burst test: 2 kV power supply-, 1 kV signal lines 4 kV
IEC/EN 61000-4-12 Damped oscillatory wave test

2.5 kV L-,L+ / PE
1 kV L+ / L -

Table 6: Interference Immunity Tests

IEC/EN 61000-6-2 Interference immunity tests Criterion
FS

IEC/EN 61000-4-6 High frequency, asymmetrical
10 V, 150 kHz...80 MHz, AM
20 V, 150 kHz...80 MHz, AM: EN 298

20 V

IEC/EN 61000-4-3 900 MHz pulses
IEC/EN 61000-4-5 Surge: 2 kV, 1 kV 2 kV /

1 kV

Table 7: Interference Immunity Tests

IEC/EN 61000-6-4 Noise emission tests
EN 55011
Class A

Emission test:
radiated, conducted

Table 8: Noise Emission Tests

2 Safety Communication

Page 16 of 344 HI 801 101 E Rev. 3.00

Power Supply
The following table lists the key tests and thresholds for the device's power supply:

IEC/EN 61131-2 Review of the DC supply characteristics
Alternatively, the power supply must comply with the following
standards:
IEC/EN 61131-2 or
SELV (Safety Extra Low Voltage) or
PELV (Protective Extra Low Voltage)
HIMax devices must be fuse protected as specified in this manual
Voltage range test:
24 VDC, -20 %...+25 % (19.2 V...30.0 V)
Momentary external current interruption immunity test:
DC, PS 2: 10 ms
Reversal of DC power supply polarity test:
Refer to corresponding chapter of the system manual or data sheet of
power supply.

Backup duration withstand test:
Test B, 1000 h

Table 9: Review of the DC Supply Characteristics

ESD Protective Measures
Only personnel with knowledge of ESD protective measures may modify or extend the
system or replace a module.

 NOTE

Electrostatic discharge can damage the electronic components within the
controllers!
 When performing the work, make sure that the workspace is free of static and wear an

ESD wrist strap.
 If not used, ensure that the module is protected from electrostatic discharge, e.g., by

storing it in its packaging.
Only personnel with knowledge of ESD protective measures may modify or extend
the system wiring.

Communication 2 Safety

HI 801 101 E Rev. 3.00 Page 17 of 344

2.2 Residual Risk
No imminent danger results from a HIMax module itself.

Residual risk may result from:

 Faults in the engineering
 Faults in the user program
 Faults in the wiring

2.3 Safety Precautions
Observe all local safety requirements and use the protective equipment required on site.
Safety shoes are required while mounting the X-BASE PLATE.

2.4 Emergency Information
A HIMax controller is a part of the safety equipment of a system. If the controller fails, the
system adopts the safe state.

In case of emergency, it is not permitted to access the safety equipment.

3 Product Description Communication

Page 18 of 344 HI 801 101 E Rev. 3.00

3 Product Description
The HIMax system is a safety-related control system and is intended for continuous
operation and maximum availability.

HIMax is a modular system. Functions such as processing, input and output, and
communication are distributed on plug-in modules.

In addition to using the physical input and output variables of the HIMax system, variables
can also be exchanged with other system through a data connection.

The safety-related safeethernet protocol and various standard protocols are available for
exchanging process data.

3.1 Safety-Related Protocol (safeethernet)
All HIMax systems can safely communicate in SIL 3 via Ethernet. The safeethernet
protocol ensures safety-related communication.

The safety-related safeethernet protocol is used to ensure that HIMax and HIMatrix
controllers can safely exchange process data in an Ethernet network.

Processor modules: safeethernet is executed on the processor module.
A maximum of 4 processor modules per HIMax controller.

Connections: For each HIMax: a maximum of 255 safeethernet
connections.
For each HIMatrix: a maximum of 64 safeethernet
connections.

Transmission paths: Ethernet interfaces of the COM module and processor
modules
Ethernet interfaces in use can simultaneously be used for
additional protocols.

Process data volume: On each safeethernet connection, a maximum of 1100 bytes
for HIMax and 900 bytes for HIMatrix can be transferred in
each direction.

i
The maximum process data volume of the controller of
512 kB must not be exceeded. If this is the case, the
controller configuration is rejected during the load
process.

For more on the safety-related protocol safeethernet, refer to Chapter 4.

 WARNING

Manipulation of safety-related data transfer!
Physical injury
The operator is responsible for ensuring that the Ethernet used for safeethernet is
sufficiently protected against manipulations (e.g., from hackers).
The type and extent of the measures must be agreed upon together with the
responsible test authority.

Communication 3 Product Description

HI 801 101 E Rev. 3.00 Page 19 of 344

3.2 Standard Protocols
Numerous proven standard protocols are available to ensure that field devices and control
systems are optimally integrated in the HIMax systems. In this scenario, both Ethernet and
field bus protocols can be used.

Many communication protocols only ensure a non-safety-related data transmission. These
protocols can only be used for the non-safety-related aspects of an automation task.

Communication modules: Standard protocols are run on the COM module
Transmission paths: Ethernet interfaces and fieldbus interfaces of the COM.
Maximum number of
standard protocols

HIMax:
 20 COM modules per HIMax controller.
 20 standard protocols per HIMax controllers.
 61) Standard protocols per COM module

HIMatrix:
 4 standard protocols per HIMatrix controllers.

Process data volume: With all non-safety-related protocols,
each HIMax controller can transmit a total of 128 bytes of
data and receive a total of 128 bytes of data.
each HIMatrix controller can transmit a total of 64 bytes of
data and receive a total of 64 bytes of data.

1) SNTP client and SNTP server are not included in this calculation.

 WARNING

Use of unsafe import data
Physical injury
Non-safe data must not be used for performing the safety functions of the user
program.

The following standard protocols are available:

Protocol Per module Description
PROFINET IO Controller 1 Chapter 5.2
PROFINET IO Device 1 Chapter 5.7
PROFIBUS DP master 2 Chapter 6.1
PROFIBUS DP slave 1 Chapter 6.13
Modbus master 1 Chapter 7.1
Modbus slave 1 Chapter 7.9
S&R TCP 1 Chapter 8
HIMA X-OPC Server1) --- Chapter 10
ComUserTask 1 Chapter 11
Table 10: Available Standard Protocols
1) The HIMA X-OPC server is installed on a host PC and is used as a transfer interface for
up to 255 HIMax controllers and third-party systems that have an OPC interface.

i
Max. 64 TCP connections per HIMatrix controller or HIMax COM module.
Max. 1280 TCP connections per HIMax controller with 20 COM module.

3 Product Description Communication

Page 20 of 344 HI 801 101 E Rev. 3.00

Maximum number of active protocols on one HIMatrix or one HIMax COM module

A maximum of 64 TCP sockets are available for each HIMatrix or HIMax COM module.

Example 1:

Protocol Connections
1 Modbus master TCP: 44 slave connections, RTU: 122 slave connections
1 Modbus slave TCP: 20 master connections, RTU: 1 master connections

Table 11: Protocols on one Communication Module

Example 2:

Protocol Connections
1 PROFIBUS DP master 122 slave connections
1 PROFIBUS DP slave 1 master connection

Table 12: Protocols on one Communication Module

3.3 Redundancy
The HIMax system conceptual design is characterized by high availability and also provides
redundancy for the purpose of communication. A communication connection is redundant if
two identical physical transmission paths exist.

Redundant communication on HIMatrix is only ensured via safeethernet.

Redundancy via safeethernet

Redundancy is configured in the safeethernet Editor by selecting the Ethernet interfaces
for the two transmission paths (see Chapter 4.2).

Redundancy via Standard Protocols

PROFIBUS DP master
PROFIBUS DP slave
PROFINET IO
TCP S&R
Modbus master

Redundancy of the standard protocols must be
configured in the user program such that the user
program monitors the redundant transmission
paths and assigns the redundantly transmitted
process data to the corresponding transmission
path.

Modbus slave Redundancy can be set in SILworX.

3.4 Structure of the HIMax COM Module Part Number
The X-COM 01 module forms a functional unit with the X-CB 001 02 Connector Board.
Note that the Connector Board must be separately purchased.

When the X-COM 01 is equipped with one or several fieldbus submodules, the module
name changes to X-COM 010 XY*, see Table 13.

The available components and their part numbers are listed below:

Designation Description Part no.
X-COM 01 Communication module without fieldbus

submodule
98 5260000

X-COM 010 XY Communication module with fieldbus submodule 98 52600XY
X-CB 001 02 Connector board 98 5020008

Table 13: Part Numbers

x: Option for fieldbus submodule 1 (fieldbus interface 1)

Communication 3 Product Description

HI 801 101 E Rev. 3.00 Page 21 of 344

y: Option for fieldbus submodule 2 (fieldbus interface 2)

Option values for x and y:

0: No fieldbus submodule inserted

1: RS485 (Modbus master, Modbus slave, depending on the license code)
or CUT (ComUserTask)

2: PROFIBUS DP master

3: PROFIBUS DP slave

4 ---

5 RS232 submodule for CUT (ComUserTask) inserted.

6 RS422 submodule for CUT (ComUserTask) inserted.

The part number (Part no.) is printed on the type label of the module.

Examples:

Part no. Fieldbus submodule 1 (FB1) Fieldbus submodule 2 (FB2)
98 52600 21 PROFIBUS master RS485
98 52600 23 PROFIBUS master (max. 12 Mbit) PROFIBUS slave (max. 1.5 Mbit)
98 52600 11 RS485 RS485
98 52600 00 - -

Table 14: Examples of COM Module Part Numbers

i
HIMA recommends operating the PROFIBUS DP using the FB1 fieldbus interface
(maximum transfer rate 12 Mbit). The maximum transfer rate permitted for the FB2 fieldbus
interface is 1.5 Mbit.

 CAUTION

Improper opening of the COM module
Damage to COM module
Only HIMA may mount fieldbus submodules on the communication module.

3 Product Description Communication

Page 22 of 344 HI 801 101 E Rev. 3.00

3.5 Protocol Registration and Activation

The protocols specified below are available for the HIMax systems and can be activated as
follows:

Protocol Interfaces Activation
HIMA safeethernet Ethernet [1]
HIMA X-OPC server (it runs on a the
host PC)

Ethernet [4]

Modbus TCP master Ethernet [4]
Modbus TCP slave Ethernet [4]
TCP send/receive Ethernet [4]
SNTP server/client Ethernet [4]
PROFIBUS DP master FB1 and FB2 [2]
PROFIBUS DP slave FB1 or FB2 [2]
Modbus master RS485 FB1 or FB2 [3]
Modbus slave RS485 FB1 or FB2 [3]
CUT (ComUserTask) RS232 and RS422 FB1 or FB2 [3]
Table 15: Protocols Available for the HIMax Systems

[1]. safeethernet is activated by default in all HIMax systems.

[2]. The PROFIBUS master and PROFIBUS slave are activated by installing one fieldbus
submodule.

[3]. Additionally, a software activation code must be purchased for the selected fieldbus
protocol used with the RS485 fieldbus submodule (Modbus RS485), and with the RS232
and RS422 fieldbus submodules (ComUserTask).

[4]. The software activation code can be generated on HIMA website using the system ID of
the controller. Follow the instructions provided on the HIMA website.

i
The software activation code unseparately connected with this system ID. One license can
only be used one time for a specific system ID. For this reason, only activate the code when
the system ID has been uniquely defined.

All Ethernet protocols can be tested without software activation code for 5000 operating
hours .

i
To avoid potential delays, remember to generate your software activation code on time!
After these 5000 operating hours, communication is continued until the controller is
stopped. Afterwards, the user program cannot be started without a valid software activation
code for the protocols used in the project (invalid configuration).

To enter the software activation code in SILworX

1. In the structure tree, select Configuration, Resource, License Management.
2. Right-click License Management, and then select New, License Key.

 A new license key is created.
3. Right-click License Key, then click Properties.

4. Enter the new software activation code in the Activation Code field.

Communication 3 Product Description

HI 801 101 E Rev. 3.00 Page 23 of 344

3.6 Ethernet Interfaces
The Ethernet interfaces of the processor and COM modules are used to communicate with
external systems. Each individual Ethernet interface can simultaneously process several
protocols.

i
Process data cannot be transferred over the Ethernet interface of the X-SB 01 system bus
module. The UP and DOWN Ethernet interfaces are exclusively intended for
interconnecting HIMax base plates.

3.6.1 Ethernet Interfaces Properties
Property Processor module HIMax COM module

HIMatrix
Ports 4 4
Transfer standard 10/100/1000 Base-T,

half and full duplex
10/100 Base-T,
Half and full duplex

Auto negotiation Yes Yes
Auto crossover Yes Yes
Connection socket RJ-45 RJ-45
IP address Freely configurable1) Freely configurable1)
Subnet mask Freely configurable1) Freely configurable1)
Supported protocols safeethernet

Programming and
debugging tool (PADT)
SNTP

safeethernet
Programming and debugging
tool (PADT)
TCP SR, SNTP, Modbus
TCP/UDP

Table 16: Ethernet Interfaces Properties
1) The general rules valid for assigning IP address and subnet masks must be adhered to.

Each COM and processor module is equipped with one Ethernet switch with IP address
and four ports on the corresponding connector board.

To transfer data, the Ethernet switch of one processor or COM module establishes a
targeted connection between two communication partners. This prevents collisions and
reduces the load on the network.

For targeted data forwarding, a MAC/IP address assignment table (ARP cache) is
generated in which the MAC addresses are assigned to specific IP addresses. From now
on, data packets are only forwarded to the IP addresses specified in the ARP cache.

i
Replacement of one processor module or one COM module with identical IP address
If a processor module or COM module has its ARP Aging time set to 5 minutes and its MAC
Learning set to Conservative, its communication partner does not adopt the new MAC
address until a period of 5 to 10 minutes after the module is replaced. Until the new MAC
address has been adopted, no communication is possible using the replaced processor
module or COM module.

In addition to the configurable ARP Aging time, the user must wait at least the non-
configurable MAC Aging time of the switch (approx. 10 seconds) before the replaced
processor or COM module is able to communicate again.

3 Product Description Communication

Page 24 of 344 HI 801 101 E Rev. 3.00

3.6.2 Configuring the Ethernet Interfaces
The Ethernet interfaces are configured in the Detail View of the processor or COM module.

For HIMax controllers, the Speed Mode and Flow-Control Mode parameters are set per
default to Autoneg.

i
Communication lost!
With an inappropriate Ethernet parameters setting, the processor or communication module
might no longer be reachable. If this is the case, reset the module!

To open the Detail View of the communication module

1. In the structure tree, open Configuration, Resource, Hardware.
2. Right-click Hardware , and then click Edit to open the Hardware Editor.
3. Right-click Communication Module , and then click Detail View. The Detail View

opens.

Figure 1: Dialog Box for Configuring the Processor and COM Modules in SILworX

i
The parameters set in the properties of the COM or the processor modules are not
available for the HIMax system communication, until they have been re-compiled with the
user program and transferred to the controller.

Communication 3 Product Description

HI 801 101 E Rev. 3.00 Page 25 of 344

Module
Element Description
Name Name of the communication module.
Use Max CPU Load for
HH Protocol

 Activated: Use CPU load limit from the Max. CPU Load [%]
field.

 Deactivated: Do not use the CPU Load limit for safeethernet.
Max. CPU Load for HH
Protocol [%]

Maximum CPU load of module that can be used for processing
the safeethernet protocols.

i
The maximum load must be distributed among all the
implemented protocols that use this communication
module.

IP Address IP address of the Ethernet interface.
Subnet Mask 32 bit address mask to split up the IP address in network and

host address.
Speed Mode
Flow Control Mode i

Only the Autoneg setting is permitted!
With other settings, the module adopts the STOP state.

Standard Interface Activated: the interface is used as standard interface for the

system login.
Default Gateway IP address of the default gateway.
Activate Extended
Settings

Use the ARP Aging Time [s], MAC Learning and IP Forwarding
parameters.

ARP Aging Time [s] A processor or COM module stores the MAC addresses of the
communication partners in a MAC/IP address assignment table
(ARP cache).

If in a period of 1 to 2 time ARP Aging Time ...
- ... messages of the communication are received, the MAC

address remains stored in the ARP cache.
- ... no messages of the communication partner are received,

the MAC address is erased from the ARP cache.

The typical value for the ARP Aging Time in a local network
ranges from 5...300 s.
The user cannot read the contents of the ARP cache.

If routers or gateways are used, the user must adjust (increase)
the ARP Aging Time due to the additional time required for two-
way transmission.
If the ARP Aging Time is too low, the processor or the COM
module deletes the MAC address of the communication partner
from the ARP cache and the communication is either delayed or
breaks down entirely. For an efficient performance, the ARP
aging time value must be less than the receive timeout set for
the protocols in use.

Range of values: 1...3600 s
Default value: 60 s

3 Product Description Communication

Page 26 of 344 HI 801 101 E Rev. 3.00

MAC Learning MAC Learning and ARP Aging Time are used to set how quick
the Ethernet switch should learn the MAC address.

The following settings can be configured:
 Conservative (recommended):

If the ARP cache already contains MAC addresses of
communication partners, these are locked and cannot be
replaced by other MAC addresses for at least one ARP Aging
Time and a maximum of two ARP Aging Time periods. This
ensures that data packets cannot be intentionally or
unintentionally forwarded to external network participants
(ARP spoofing).

 Tolerant:
When a message is received, the IP address contained in the
message is compared to the data in the ARP cache and the
MAC address stored in the ARP cache is immediately
overwritten with the MAC address from the message.
Use the Tolerant setting if the availability of communication is
more important than the authorized access to the controller.

IP Forwarding Allow a processor or COM module to operate as router and to
forward data packets to other network nodes.
 Activated: Forwarding is enabled.
 Deactivated: Forwarding is disabled.

ICMP Mode The Internet Control Message Protocol (ICMP) allows the higher
protocol layers to detect error states on the network layer and
optimize the transmission of data packets.
Message types of Internet Control Message Protocol (ICMP)
supported by the processor module:
 No ICMP Responses

All the ICMP commands are deactivated. This ensures a high
degree of safety against potential sabotage that might occur
over the network.

 Echo Response
If Echo Response is activated, the node responds to a ping
command. It is thus possible to determine if a node can be
reached. Safety is still high.

 Host unreachable
Not important for the user. Only used for testing at the
manufacturer's facility.

 All Implemented ICMP Responses
All ICMP commands are activated. This allows a more
detailed diagnosis of network malfunctions.

Table 17: Configuration Parameters

Communication 3 Product Description

HI 801 101 E Rev. 3.00 Page 27 of 344

Routings
Element Description
Name Denomination of the routing settings
IP
Address

Target IP address of the communication partner (with direct host routing) or
network address (with subnet routing).
Range of values: 0.0.0.0 ... 255.255.255.255
Default value: 0.0.0.0

Subnet
Mask

Define the target address range for a routing entry.
255.255.255.255 (with direct host routing) or subnet mask of the addressed
subnet.
Range of values: 0.0.0.0 ... 255.255.255.255
Default value: 255.255.255.255

Gateway IP address of the gateway to the addressed network.
Range of values: 0.0.0.0 ... 255.255.255.255
Default value: 0.0.0.1

Table 18: Routing Parameters

Ethernet Switch
Element Description
Port Port number as printed on the enclosure; per port, only one configuration may

exist.
Range of values: 1... 4

Speed
[Mbit/s]

10 Mbit/s: Data rate 10 Mbit/s
100 Mbit/s: Data rate 100 Mbit/s
1000 Mbit/s: Data rate 1000 Mbit/s (processor module)
Autoneg (10/100/1000): Automatic baud rate setting
Default value: Autoneg

Flow
Control

Full duplex: Simultaneous communication in both directions
Half duplex: Communication in one direction
Autoneg: Automatic communication control
Default value: Autoneg

Autoneg
also with
Fixed
Values

The "Advertising" function (forwarding the speed and flow control properties) is
also performed if the parameters Speed and Flow Control have fixed values.
This allows other devices with ports set to Autoneg to recognize the HIMax port
settings.

Limit Limit the inbound multicast and/or broadcast packets.OFF
Off: No limitation
Broadcast: Limit broadcast packets (128 kbit/s)
Multicast and Broadcast: Limit multicast and broadcast packets (1024 kbit/s)
Default value: Broadcast

Table 19: Ethernet Switch Parameters

3 Product Description Communication

Page 28 of 344 HI 801 101 E Rev. 3.00

VLAN (Port-Based VLAN)
For configuring the use of port-based VLAN.

i
Should VLAN be supported, port-based VLAN should be off to enable each port to
communicate with the other switch ports.

For each switch port, the user can define which switch other port received Ethernet frames
may be sent to.
The table in the VLAN tab contains entries through which the connection between two ports
can be set as active or inactive.

 Eth1 Eth2 Eth3 Eth4
Eth1
Eth2 Active
Eth3 Active Active
Eth4 Active Active Active
COM Active Active Active Active

Table 20: VLAN Tab

Default setting: All connection between ports active

LLDP
LLDP (Link Layer Discovery Protocol) allows the use of the own device to send information
(such as MAC address, device name, port number) per multicast in periodic intervals and to
receive the same information from the devices closed-by.
The processor and communication modules support LLDP on the Eth1, Eth2, Eth3 and
Eth4 ports.

The following parameters define how a given port should work:

Off LLDP is disabled on this port

Send LLDP sends LLDP Ethernet frames, received LLDP Ethernet
frames are deleted without being processed.

Receive LLDP sends no LLDP Ethernet frames, but received LLDP
Ethernet frames are processed.

Send/Receive LLDP sends and processes received LLDP Ethernet frames.

Default setting: Send/Receive

Mirroring
Mirroring is used to configure wether the module should duplicate Ethernet packets on a
given port such that they can be read from a device connected to that port, e.g., for test
purposes.

The following parameters define how a given port should work:

Off This port does not participate in mirroring.

Egress: Outgoing data of this port are duplicated.

Ingress: Incoming data of this port are duplicated.

Ingress/Egress: Incoming and outgoing data of this port are duplicated.

Dest Port: This port is used to send duplicated data.

Default setting: OFF

Communication 3 Product Description

HI 801 101 E Rev. 3.00 Page 29 of 344

3.6.3 Network Ports Used for Ethernet Communication

UDP Ports / Use

8000 Programming and operation with SILworX

8001 PES used to configure the remote I/Os

6010 safeethernet and OPC

123 SNTP (time synchronization between PES and remote I/O, PES and external
devices)

8895 Modbus master UDP, if configured

502 Modbus salve (can be modified by the user)

TCP Ports / Use

8895 Modbus master

502 Modbus salve (can be modified by the user)

Xxx TCP SR assigned by the user

3.7 Fieldbus Interfaces
Fieldbus interfaces of the COM module can be used to communicate with external systems.
Only one protocol can be operated on each single fieldbus interface.

The fieldbus interfaces must be equipped with a fieldbus submodule. If no fieldbus
submodule is used, communication is not possible on this interface. The transfer standard
for the interface depends on the fieldbus submodule.

Designation Interface Protocol
FB 1 D-sub connector

9-pole
PROFIBUS master
PROFIBUS slave
Modbus master RS485
Modbus slave RS485
ComUserTask (RS232)

FB 2 D-sub connector
9-pole

PROFIBUS master
PROFIBUS slave
Modbus master RS485
Modbus slave RS485
ComUserTask (RS232)

Table 21: Fieldbus Interfaces

3 Product Description Communication

Page 30 of 344 HI 801 101 E Rev. 3.00

3.7.1 Pin Assignment of D-SUB Connectors FB1 and FB2

i
The PIN assignment of the fieldbus interfaces depends on the fieldbus submodule used
and is specified in the following table.

Fieldbus Submodule for PROFIBUS DP Master or Slave

Pin Signal Function
1 --- ---
2 --- ---
3 RxD/TxD-A Receive/send Data A
4 RTS Control signal
5 DGND Data reference potential
6 VP +5 V supply voltage
7 --- ---
8 RxD/TxD-B Receive/send Data B
9 --- ---

Table 22: Pin Assignment of D-Sub Connectors FB1 and FB2 for PROFIBUS DP

RS485 Fieldbus Submodule for Modbus Master or Slave

Pin Signal Function
1 --- ---
2 RP +5 V decoupled with diodes
3 RxD/TxD-A Receive/send Data A
4 CNTR-A Control signal A
5 DGND Data reference potential
6 VP +5 V supply voltage
7 --- ---
8 RxD/TxD-B Receive/send Data B
9 CNTR-B Control signal B

Table 23: Pin Assignment of D-Sub Connectors FB1 and FB2 for Modbus

Fieldbus Submodule RS232 for ComUserTask

Pin Signal Function
1 --- ---
2 TxD Send Data
3 RxD Received data
4 --- ---
5 DGND Data reference potential
6 --- ---
7 RTS Requirement to be sent
8 --- ---
9 --- ---

Table 24: Pin Assignment of D-Sub Connectors FB1 and FB2 for RS232

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 31 of 344

4 safeethernet
All HIMax systems are safeethernet capable. They can safely communicate in SIL 3 via
Ethernet (HIMax 1 Gbit/s , HIMatrix 100 Mbit/s)

The corresponding Ethernet interfaces of the HIMax controllers can be also used for other
protocols.

Various Ethernet network topologies can be used to ensure safeethernet communication
between controllers. To improve the data transfer speed and efficiency, tailor the
safeethernet protocol parameters to the Ethernet network in use.

These parameters can be set using so-called network profiles. The factory parameter
settings ensure communication even if the user is not thoroughly familiarized with the
network configuration.

i
The safeethernet protocol is safety-related and certified by the TÜV up to SIL 3 in
accordance with IEC 61508.

Equipment and System Requirements:

HIMA controller HIMax with processor module
Activation This function is activated by default in all HIMax systems.

safeethernet (Properties):

Processor modules safeethernet is executed on the processor module.
A maximum of 4 processor modules per HIMax controller.

Connections For each HIMax: a maximum of 255 safeethernet connections.
For each HIMatrix: a maximum of 64 safeethernet connections.

Transmission path Ethernet interfaces of the COM module and processor modules.
Ethernet interfaces in use can simultaneously be used for
additional protocols.

Redundant
transmission paths

Two-channel operation
Redundant safeethernet transmission paths between HIMax and
HIMax systems can be configured in the safeethernet Editor.

Process data volume On each safeethernet connection, a maximum of 1100 bytes for
HIMax and 900 bytes for HIMatrix can be transferred in each
direction.

i
The maximum process data volume of the controller of
512 kB must not be exceeded. If this is the case, the
controller configuration is rejected during the load
process.

Cross-project
communication

safeethernet connections to a resource in another project can be
configured in SILworX, see Chapter 4.8.

4 safeethernet Communication

Page 32 of 344 HI 801 101 E Rev. 3.00

4.1 What is safeethernet?
Requirements as determinism, reliability, interchangeability, extendibility and above all
safety, are central issues within the process and automation technology.

safeethernet is a transfer protocol for transmitting safety-related data up to SIL 3 when
Ethernet technology is used.

safeethernet implements mechanism that can detect and safely react to the following
faults:

 Corruptions of the transmitted data (duplicated, lost and changed bits)
 Wrong message addressing (transmitter, receiver)
 Wrong data sequence (repetition, lost, change)
 Wrong timing (delay, echo)

safeethernet is based on the IEEE 802.3 standard.

The standard Ethernet protocol frame is used to transmit safety-related data.

safeethernet uses "unsafe data transfer channels" (Ethernet) in accordance with the "black
channel" approach and monitors them on the transmitter and receiver side by using safety-
related protocol mechanism. This allows the user to use normal Ethernet network
components such as hubs, switches, routers within a safety-related network.

The significant difference to standard Ethernet is the safety and the real-time ability of
safeethernet. A special protocol mechanism ensures a deterministic behavior even if faults
occur or new communication participants join the network. The system automatically
integrates new components in the running system. All network components can be
replaced during operation. Transmission times can be clearly defined using switches.
Ethernet is thus real-time capable.

The possible transfer speed up to 1 Gbit/s for safety-related data is higher than the speed
normally used. Transmission media such as copper lines and fiber optic cables can be
used.

safeethernet allows both connections to the company Intranet and to the Internet.
Therefore, just one network is required for both safe and unsafe data transmission.

i
The network may be shared with other participants if sufficient transfer capacity is available.

safeethernet allows the user to create flexible system structures for decentralize
automation with defined reaction times. Depending on the requirements, the intelligence
can be distributed to the network participants in a centralized or decentralized manner.

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 33 of 344

Figure 2: System Structures

i
Unintentional transition to the safe state possible!
Ensure that no network loops result from interconnecting the controllers. Data packets may
only travel to a controller over a single path.

4 safeethernet Communication

Page 34 of 344 HI 801 101 E Rev. 3.00

4.2 Configuring a Redundant safeethernet Connection
This example shows how to configure a redundant HIMax/HIMax safeethernet connection.

Figure 3: Structure for Configuring a Redundant Connection

i
For redundant safeethernet connections, HIMA recommends using two separate
communication modules to implement the two transmission paths (channel 1 and channel
2). When doing so, the bandwidth and the delay on the respective transmission paths must
be nearly identical.

Establishing the safeethernet Connection
In the safeethernet Editor, create a safeethernet connection between the locale and the
target resource.

Figure 4: Resource Structure Tree

To open the safeethernet Editor of the local resource

1. In the structure tree, open Configuration, Resource.
2. Right-click safeethernet, then click Edit.

 The target resources are located in the Object Panel.

To create the safeethernet connection to the target resource

1. In the Object Panel, drag the target resource anywhere in the workspace of the
safeethernet Editor.

i
The reciprocal communication path is automatically added in the safeethernet Editor of the
target resource.

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 35 of 344

To configure the safeethernet connection

1. Select Ethernet interfaces Channel 1 on the local and target resource.

2. Select Ethernet interfaces Channel 2 on the local and target resource.
3. Select the Network Profile for the safeethernet connection (e.g., Fast&Noisy)..
4. Calculate and enter Receive Timeout and Response Time (see Chapter 4.6).

Figure 5: Parameter Values for a safeethernet Connection:

Connecting Process Variables

To open the Detail View of a safeethernet connection

Requirement: The safeethernet Editor of the local resource is open.
1. Right-click the Target Resource to open the context menu.

2. Select Detail View.
3. Select the Resource (target)<->Resource (local) tab.

Figure 6: Detail View in the safeethernet Editor

i
Only global variables from the configuration context may be used, and not from the
resource context!

To add safeethernet send variables

Send variables are sent from the local to the target resource.
1. Select the Resource (local)->Resource (target) area.

2. In the Object Panel, select a Global Variable and drag it onto the Resource (target)-
>Resource (local) column.

3. Repeat these steps for every further safeethernet send variables.

4 safeethernet Communication

Page 36 of 344 HI 801 101 E Rev. 3.00

To add safeethernet receive variables

Receive variables are received by the local resource.

1. Select the Resource (target) <-Resource (local) area.

2. In the Object Panel, select a Global Variable and drag it onto the Resource (target)<-
Resource (local) column.

3. Repeat these steps for every further safeethernet receive variables.

To verify the safeethernet connection

1. In the structure tree, open Configuration, Resource, safeethernet.

2. Click the Verification button on Action Bar, and then click OK to confirm the action.
3. Thoroughly verify the messages contained in the Status Viewer and correct potential

errors.

i
The configuration of the safeethernet connection must be recompiled with the user
program of the local and target resources and transferred to the controllers. The new
configuration can only be used for communicating with the HIMax system after this step is
completed.

Verifying safeethernet Communication

In the Control Panel, reset the Wrong Messages and Resends values to zero.

1. Use the system under the maximum load:

- All communication protocols are operating (safeethernet and standard protocols).
- Remove and re-insert the processor module such as described in Chapter 4.6.1.
- Perform a reload to load the user program.

i
To verify that the redundant safeethernet connection was established properly, disconnect
and reconnect one redundant connection and then repeat this test for the other
connections. During this test, no faults must occur in the safeethernet communication.

2. In the Control Panels of the two controllers, verify the Wrong Messages and Resends

values. If the counter for Bad Messages and Resends
= 0, then the safeethernet settings are OK.
≥ 0, the safeethernet settings must be rechecked.
- Recalculate the Receive Timeout using the maximum cycle time, see Chapters

4.6.1 and 4.6.2.
- Vary the Response Time such as described in Chapter 4.6.3.

i
Additional causes for bad messages and resends!
Verify the correct network design (e.g., lines, switches, PCs). If the Ethernet network is not
exclusively used for safeethernet, also verify the network load (probable data collisions).

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 37 of 344

4.3 safeethernet Editor
The safeethernet Editor is used to create and configure the safeethernet connections to
the communication partners (resources).

To open the safeethernet Editor of the local resource

1. In the structure tree, open Configuration, Resource.
2. Right-click safeethernet, then click Edit.

 The safeethernet Editor includes the workspace and the Object Panel
The safeethernet Editor is used to create and configure the safeethernet connections to
the communication partners (resources). To do this, drag the resource from the Object
Panel onto the workspace.

Set the following safeethernet protocol parameters to configure the safeethernet
connection:

Parameter Description
Partner Resource name of the link partner
IF CH... Ethernet interfaces available on the (local) and (target) resource,

see also Chapter 3.6.
Profile Combination of matching safeethernet parameters, see also

Chapter 4.7.5.
Sync/Async Set the data exchange synchronous or asynchronous to the

CPU cycle, see Chapter 4.6.4.
Response Time
[ms]

Time until the acknowledgment of a message is received by the
sender, see also Chapter 4.6.3.

Receive Timeout
[ms]

Monitoring time of PES 1 within which a correct response from
PES 2 must be received, see also Chapter 4.6.2.

Resend Timeout
[ms]

Monitoring time of PES1 within which PES2 must have
acknowledged the reception of a data packet, otherwise the data
packet is resent, see also Chapter 4.6.5.

Acknowledge Timeout
[ms]

Time period within which the CPU must acknowledge the
reception of a data packet, see also Chapter 4.6.6.

Prod. Rate Production rate: Minimum time interval between two data
packets, see also Chapter 4.6.7.

Queue Number of data packets that can be sent without
acknowledgment, see also Chapter 4.6.8.

4 safeethernet Communication

Page 38 of 344 HI 801 101 E Rev. 3.00

Freeze Values on Lost
Connection [ms]

Behavior of the input variables for this safeethernet connection
if the connection is interrupted.
Use initial
values

The initial data are used for the input variables.

Not limited The input variables are freezed to the current
value and used until a new connection is
established.

Limited Input: Double-click on drop-down field and
enter time.
The input variables are freezed to the current
value and used until the configured timeout.
Afterwards the initial data are used for the
input variables.
The start of timeout can be delayed up to one
CPU cycle.

 CAUTION

For safety-related functions implemented via
safeethernet, only the Use Initial Data setting
may be used.

Fragments per Cycle Fixed setting: One view per controller cycle is transferred to the

communication partner.
The view of a HIMax is a fragment of ≤ 1100 bytes.
The view of a HIMatrix is a fragment of ≤ 900 bytes.

Ignored Warning Count No function yet!
Warning period [ms] No function yet!
Enable SOE Default value: activated

Table 25: safeethernet Protocol Parameters

Object Panel
The Object Panel contains all the project resources with which the current resource can be
connected via safeethernet.

i
An export function is available to establish safeethernet connections to resources outside
the project or to a HIMatrix controller (projected in ELOP II Factory) (see Chapter 4.8).

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 39 of 344

4.4 Detail View of the safeethernet Editor
The Detail View has always a reference to the local resource for which the safeethernet
Editor was started.

To open the Detail View of a safeethernet connection

1. Right-click the safeethernet connection to open the context menu.
2. Click Detail View.

 The Detail View contains the System Variables, View Definitions and Resource
(local)<->Resource (target) tabs.

4.4.1 Tab: System Variables
System variables are used to control the safeethernet connection in the user program and
evaluate its status.

System Variables Description
Ack. Frame No. Reception Counter (rotation)
Number of bad messages
Number of bad messages
for the red. channel

Number of all the bad messages per channel (invalid
CRC, invalid header, other faults)

Number of successful
connections

Number of successful connections since statistics reset.

Number of lost messages
Number of lost messages
for the red. channel

Number of messages dropped out on one of the two
transmission paths since statistics reset.
The counter only continues to run until a channel
completely fails.

Early Queue Usage Number of messages stored in Early Queue since
statistical reset, see also Chapter 4.6.8.

Bad messages Number of rejected messages since statistics reset.
Frame no. Sent counter (rotation).
Channel state Current state of Channel 1.

The channel state is the current state of Channel 1 to the
time (Seq. no X-1) when a message with Seq. no. X is
received.

Status Description
0 No information on the state of Channel 1.
1 Channel 1 OK.
2 The last message was wrong, the current

one is OK.
3 Fault on Channel 1.

Layout Version Signature of the data layout used within communication.
Last channel latency
Last latency of
the red. channel
Max. channel latency
Max. latency of
the red. channel
Min. channel latency
Min. latency of
the red. channel
Average channel latency

The channel latency specifies the delay between two
redundant transmission paths to the reception time of
messages with identical Seq. no.
 A statistic is kept specifying the average, minimum,
maximum and last latency.
If the minimum value is greater that the maximum value,
the statistic values are invalid.
The last channel latency and the average channel latency
are then 0.

4 safeethernet Communication

Page 40 of 344 HI 801 101 E Rev. 3.00

Average latency of
the red. channel

Monotony Count for user data sending (rotation).
New Layout Version Signature of the new data layout.
Quality of Channel 1 State of the main transmission path.

Bit no. Bit = 0 Bit = 1
0 Transmission path

not activated
Transmission path
activated

1 Transmission path
not used

Transmission path
actively used

2 Transmission path
not connected

Transmission path
connected

3 - Transmission path
first provides
message

4 - 7 reserved reserved
Quality of Channel 2 State of the redundant transmission path, see state of

Channel 1 (main transmission path).
Receive Timeout Time in milliseconds (ms) of PES1 within which PES2

must receive a valid response.
See also Chapter 4.6.2.

Response Time Time in milliseconds (ms) until the acknowledgment of a
message is received by the sender, see also Chapter
4.6.3.

Reset safeethernet
statistics

Reset the statistical values for the communication
connection in the user program. To do this, set the Reset
Statistics parameter from FALSE to TRUE.

Transmission Control Ch1 Transmission control of Channel 1
Bit 0 Function
FALSE Transmission path activated
TRUE Transmission path locked

Bit 1 Function
FALSE Transmission path activated for tests
TRUE Transmission path locked

Bits 2...7 reserved.

Transmission Control Ch2 Transmission control of Channel 2,
see transmission control of Channel 1.

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 41 of 344

Connection Control Use this system variable to control the safeethernet
connection from within the user program.

Command Description
Autoconnect
(0x0000)

Default value:
After a safeethernet
communication loss, the controller
attempts to re-establish the
connection in the following CPU
cycle.

Toggle Mode 0
(0x0100)
Toggle Mode 1
(0x0101)

After a communication loss, the
connection can be re-established
performing a program-controlled
change of the toggle mode.
 TOGGLE MODE_0 (0x100)

set:
Set to TOGGLE MODE 1
(0x101) to re-establish the
connection.

 TOGGLE MODE_1 (0x101)
set:
Set to TOGGLE MODE 0
(0x100) to re-establish the
connection.

Disabled
(0x8000)

safeethernet communication is
disabled.

Connection State Connection State is used to evaluate the communication
status between two controllers from within the user
program.

Status/Value Description
Closed (0) The connection is closed and no

attempt is made to open it.
Try_open (1) An attempt is made to open the

connection, but it is still closed. This
state applies for both the active and
the passive sides.

Connected (2) The connection is established and
functioning (active time monitoring
and data exchange).

Repeats Number of reconnections since statistics reset [UDINT].
Timestamp for the last fault
on the red. channel [ms]

Millisecond fraction of the timestamp
(current system time)

Timestamp for the last fault
on the red. channel [s]

Second fraction of the timestamp
(current system time)

Timestamp for the last fault
[ms]

Millisecond fraction of the timestamp
(current system time)

Timestamp for the last fault
[s]

Second fraction of the timestamp
(current system time)

4 safeethernet Communication

Page 42 of 344 HI 801 101 E Rev. 3.00

State of the red. channel Current state of Channel 2.
The channel state is the current state of Channel 2 to the
time (Seq. no X-1) when a message with Seq. no. X is
received.

Status Description
0 No information on the state of Channel 2.
1 Channel 2 OK.
2 The last message was wrong, the current

one is OK.
3 Fault on Channel 2.

Table 26: System Variables Tab in the safeethernet Editor

4.5 Possible safeethernet Connections
A safeethernet connection between two HIMax controllers can be configured as mono or
redundant.

The Ethernet interfaces available for a safeethernet connection are always displayed
related to the resource (local) for which the safeethernet Editor was opened.

All Ethernet interfaces available for a controller are showed in the drop-down menu for the
IF CH... parameter.

Element Description
IF CH1 (local) Ethernet interface (channel 1) of the resource
IF CH2 (local) Ethernet interface (channel 2) of the resource
IF CH1 (target) Ethernet interface (channel 1) of the link partner
IF CH2 (target) Ethernet interface (channel 2) of the link partner

Table 27: Available Ethernet Interfaces

4.5.1 Mono safeethernet Connection (Channel 1)
For a mono connection, the Ethernet interfaces IF Ch1 (local) and IF Ch1 (target) must be
set in the local resource.

4.5.2 Redundant safeethernet Connection (Channel 1 and Channel 2)
Redundant safeethernet transmission paths between two HIMax/HIMax controllers are
possible.

i
When doing so, the bandwidth and the delay on the two transmission paths must be nearly
identical.

For a redundant connection, the following Ethernet interfaces can be used:

 The Ethernet interface IF Ch1 (local) and IF Ch1 (target) for channel 1.
 The Ethernet interfaces IF Ch2 (local) and IF Ch2 (target) for channel 2.
 For a redundant connection via Channel 1 and Channel 2 using only one Ethernet

interface, select the same Ethernet interface IF CH1 (local) Channel 1 and IF CH2
(local) Channel 2 in the safeethernet Editor.

i
The reciprocal communication path is automatically added in the safeethernet Editor of the
target resource.

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 43 of 344

4.5.3 Permitted Combinations
The following table lists the possible combinations for redundant safeethernet connections.

Channel 1
IF Ch1 (local) / IF Ch1 (target)

Channel 2
IF Ch2 (local) / IF Ch2 (target)

CPU1/CPU1 CPU2/CPU2
CPU1/CPU1 CPU1/CPU1
COM1/COM1 COM2/COM2
CPU1/COM1 CPU2/COM2
CPU1/COM2 CPU2/COM1
CPU1/CPU1 COM1/COM1

Table 28: Combinations for safeethernet Connections

Figure 7: Redundant Connection between Two HIMax Controllers

To achieve a constant data rate despite lost data packets, the following redundant
connection can be used (via a line).

Figure 8: Redundant Connection of Two HIMax Controllers using a Line

4 safeethernet Communication

Page 44 of 344 HI 801 101 E Rev. 3.00

4.6 safeethernet Parameters
The safety-related communication is configured in the safeethernet Editor. To do this, the
parameters described in this chapter must be set.

4.6.1 Maximum Cycle Time (Minimum Watchdog Time) of the HIMax Controller
To determine the maximum cycle time for a HIMax controller (minimum watchdog time),
HIMA recommends proceeding as follows when all the processor modules of the system
are inserted.

1. Set the watchdog time high for testing.
2. Use the system under the maximum load: In the process, all communication

connections must be operating both via safeethernet and standard protocols. Frequently
read the cycle time in the Control Panel and note the variations of the cycle time..

3. In succession, remove and reinsert every processor module in the base plate. Prior to
removing one processor module, wait that the processor module that has just been
inserted is synchronized.

i
When a processor module is inserted in the base plate, it automatically synchronizes itself
with the configuration of the existing processor modules. The time required for the
synchronization process extends the controller cycle up to the maximum cycle time.
The synchronization time increases with the number of processor modules that have
already been synchronized.
For more information on how to insert and remove a processor module, refer to the X-
CPU 01 manual HI 801 009.

4. In the diagnostic history, read the synchronization time from n to n+1 processor modules

in every synchronization process and not it down.
5. Repeat these steps for the second communication partner (i.e., the second HIMax

controller). The longest synchronization time is used to determine the watchdog time.

i
Note down the synchronization times of both HIMax controllers!

6. Calculate the minimum watchdog time from the longest synchronization time + 12 ms

spare + spare for the noted variations of the cycle time.
A suitable value for the maximum cycle time (minimum watchdog time) has been thus
determined for the following calculations.

TIP Perform the calculations specified in step 6 for both HIMax controllers and use the
corresponding synchronization time value previously noted down.
The maximum cycle times (minimum watchdog time) calculated as described above can be
used as watchdog time in the corresponding resource, see Safety Manual HI 801 003.

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 45 of 344

4.6.2 Receive Timeout
ReceiveTMO is the monitoring time in milliseconds (ms) within which a correct response
from the communication partner must be received.

If a correct response is not received from the communication partner within ReceiveTMO,
safety-related communication is terminated. The input variables of this safeethernet
connection react in accordance with the preset parameter Freeze Data on Lost Connection
[ms].

For safety-related functions implemented via safeethernet, only the Use Initial Data setting
may be used.

Since ReceiveTMO is a safety-relevant component of the Worst Case Reaction Time TR
(see Chapter 4.7.1 et seqq.), its value must be determined as described below and entered
in the safeethernet Editor.

ReceiveTMO ≥ 4*delay + 5*max. cycle time

Condition: The Communication Time Slice must be sufficiently high to allow all the
safeethernet connections to be processed within one CPU cycle.

Delay: Delay on the transmission path, e.g., due to switch or satellite.

Max. Cycle Time Maximum cycle time of both controllers.

i
A wanted fault tolerance of communication can be achieved by increasing ReceiveTMO,
provided that this is permissible in terms of time for the application process.

4.6.3 Response Time
ResponseTime is the time in milliseconds (ms) that elapses until the sender of the message
receives acknowledgement from the recipient.

When configuring using a safeethernet profile, a Response Time parameter must be set
based on the physical conditions of the transmission path.

The preset ResponseTime affects the configuration of all the safeethernet connection
parameters and is calculated as follows:

ResponseTime ≤ ReceiveTMO / n

n = 2, 3, 4, 5, 6, 7, 8.....

The ratio between ReceiveTMO and ResponseTime influences the capability to tolerate
faults, e.g., when packets are lost (resending lost data packets) or delays occur on the
transmission path.

In networks where packets can be lost, the following condition must be given:

min. Response Time ≤ ReceiveTMO / 2 ≥ 2*Delay + 2.5*max. Cycle Time

If this condition is met, the loss of at least one data packet can be intercepted without
interrupting the safeethernet connection.

i
If this condition is not met, the availability of a safeethernet connection can only be
ensured in a collision and fault-free network. However, this is not a safety problem for the
processor module!

4 safeethernet Communication

Page 46 of 344 HI 801 101 E Rev. 3.00

i
Make sure that the communication system complies with the configured response time!
If this conditions cannot always be ensured, a corresponding connection system variable
for monitoring the response time is available. If the measured response time is not seldom
exceeded for over the half P2P ReceiveTMO, the configured response time must be
increased.
The receive timeout must be adjusted according to the new value configured for response
time.

4.6.4 Sync/Async
Sync Currently not supported.

Async is the default setting.
With the Async setting, the safeethernet protocol instance receives during the
CPU input phase and sends in accordance with its send rules during the CPU
output phase.

4.6.5 ResendTMO
ResendTMO cannot be set manually, but it is calculated based on the profile and Response
Time.

Monitoring time in milliseconds (ms) of PES1 within which PES2 must have acknowledged
the reception of a data packet; otherwise the data packet is resent.

Rule: ResendTMO ≤ Receive-Timeout

If the ResendTMO set for the #communication partners differ from one another, the active
protocol partner (the lowest SRS) determines the value for the ResendTMO of the protocol
connection.

4.6.6 Acknowledge Timeout
AckTMO cannot be set manually, but it is calculated based on the profile and Response
Time.

AckTMO is the time period within which the CPU must acknowledge the reception of a data
packet.

In a rapid network, AckTMO is zero, i.e., the reception of a data packet is immediately
acknowledged. In a slow network (e.g., a telephone modem line), AckTMO is greater than
zero. In this case, the system attempts to transmit the acknowledgment message together
with the process data to reduce the network load by avoiding addressing and security
blocks.

Rules:

 AckTMO must be ≤ Receive Timeout
 AckTMO must be ≤ ResendTMO if

ProdRate is > ResendTMO.

4.6.7 Production Rate
ProdRate cannot be set manually, but it is calculated based on the profile and Response
Time.

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 47 of 344

Minimum time interval in milliseconds (ms) between two data packets.

The ProdRate is used to limit the amount of data packets such that a (slow) communication
channel will not be overloaded. This ensures a uniform load of the transmission medium
and prevents the receiver from receiving obsolete data.

Rules:

 ProdRate ≤ Receive Timeout
 ProdRate ≤ Resend Timeout, if Acknowledge Timeout > Resend Timeout

i
A zero production rate means that data packets can be transmitted in each user program
cycle.

4.6.8 Queue
Queue cannot be set manually, but it is calculated based on the profile and Response
Time.

Queue is the number of data packets that can be sent without waiting for their
acknowledgement.

The value depends on the network transfer capacity and potential network delays.

All safeethernet connections share the message queue available in the CPU.

4 safeethernet Communication

Page 48 of 344 HI 801 101 E Rev. 3.00

4.7 Worst Case Reaction Time for safeethernet
In the following examples, the formulas for calculating the worst case reaction time only
apply for a connection with HIMatrix controllers if the parameter Safety Time = 2 *
Watchdog Time is set. These formulas always apply to HIMax controllers.

i
The allowed worst case reaction time depends on the process and must be agreed upon
together with the test authority responsible for the final inspection.

Terms

ReceiveTMO: Monitoring time of PES 1 within which a correct response from PES 2
must be received. Otherwise, safety-related communication is
terminated after the time has expired.

Production Rate: Minimum interval between two data transmissions.

Watchdog Time: Maximum duration permitted for a controller's RUN cycle. The
duration of the RUN cycle depends on the complexity of the user
program and the number of safeethernet connections. The watchdog
time (WDT) must be entered in the resource properties.

Worst Case
Reaction Time

The worst case reaction time is the time between a change in a
physical input signal (in) of PES 1 and a reaction on the
corresponding output (out) of PES 2.

Delay: Delay of a transmission path e.g., with a modem or satellite
connection.
For direct connections, an initial delay of 2 ms can be assumed.
The responsible network administrator can measure the actual delay
on a transmission path.

To the calculations of the maximum reaction times specified below, the following conditions
apply:

 The signals transmitted over safeethernet must be processed in the corresponding
controllers within one CPU cycle.

 Further, the reaction time of the sensors and actuators must be added.

The calculations also apply to signals in the opposite direction.

4.7.1 Calculating the Worst Case Reaction Time of Two HIMax Controllers
The worst case reaction time TR is the time between a change on the sensor input signal
(in) of PES 1 and a reaction on the corresponding output (out) of PES 2. It is calculated as
follows

HIMax
PES 1

HIMax
PES 2 OutIn safeethernet

Figure 9: safeethernet Connection of Two HIMax Controllers

Reaction Time when two HIMax controllers are interconnected

TR = t1 + t2 + t3

TR Worst Case Reaction Time

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 49 of 344

t1 Safety Time of PES 1

t2 ReceiveTMO

t3 Safety Time of PES 2

4.7.2 Calculating the Worst Case Reaction Time in Connection with One HIMatrix
PES
Reaction time TR between a change on the sensor input signal (in) of HIMax PES 1 and a
reaction on the corresponding output (out) of HIMatrix PES 2. It is calculated as follows:

Figure 10: safeethernet Connection between One HIMax and One HIMatrix Controller

Reaction time when one HIMax controller is connected to one HIMatrix controller:

TR = t1 + t2 + t3

TR Worst Case Reaction Time

t1 Safety Time of HIMax PES 1

t2 ReceiveTMO

t3 2 * Watchdog Time of HIMatrix PES 2

4.7.3 Calculating the Worst Case Reaction Time with two HIMatrix Controllers or
RIOs
The worst case reaction time TR is the time between a change on the sensor input signal
(in) of the first HIMatrix PES 1 or RIO (e.g., F3 DIO 20/8) and a reaction on the
corresponding output (out) of the second HIMatrix PES 2 or RIO. It is calculated as follows

Figure 11: safeethernet Connection in Connection with RIOs

Response Time with RIOs

TR = t1 + t2 + t3 + t4 + t5

TR

t1

t2

t3

t4

t5

Worst Case Reaction Time

2 * watchdog time of the 1st RIO

ReceiveTMO1

2 * Watchdog Time of HIMax PES

ReceiveTMO2

2 * watchdog time of the 2nd RIO

4 safeethernet Communication

Page 50 of 344 HI 801 101 E Rev. 3.00

i
The two RIOs can also be identical. The time values still apply if a HIMatrix PES is used
instead of a RIO.

4.7.4 Calculating the Worst Case Reaction Time with Two HIMax and One
HIMatrix PES
Worst case reaction time TR between a change on the sensor input signal (in) of the first
HIMax PES and a reaction on the corresponding output (out) of the second HIMax PES. It
is calculated as follows

Figure 12: safeethernet Connection between Two HIMax and One HIMatrix PES

Reaction time when two HIMax controllers are connected to one HIMatrix controller:

TR = t1 + t2 + t3 + t4 + t5

TR

t1

t2

t3

t4

t5

Worst Case Reaction Time

Safety Time of HIMax PES 1

ReceiveTMO1

2 * Watchdog Time of HIMatrix PES 2

ReceiveTMO2

Safety Time of HIMax PES 3

i
HIMax PES 1 and HIMax PES 3 can also be identical.
HIMatrix PES 2 can also be a HIMax PES.

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 51 of 344

4.7.5 safeethernet Profile
safeethernet profiles are combinations of parameters compatible with one another that are
automatically set when one of the safeethernet profiles is selected.
When configuring, only the Receive Timeout and the expected Response Time parameters
must be individually set.
A safeethernet profile is used to optimize the data throughput within a network taking the
physical conditions into account.

To ensure that the optimization is effective the following conditions must be met:

 the Communication Time Slice must be sufficiently high to allow all the safeethernet
connections to be processed within one CPU cycle.

 if average CPU cycle time < response time.
 if average CPU cycle time < ProdRate or ProdRate = 0.

 NOTE

Disturbance of the safeethernet communication up to communication loss!
Unsuitable combinations of CPU cycle, communication time slice, response time and
ProdRate are not rejected during code generation and download/reload, but can
cause communication disturbances.
In the Control Panel, verify the Bad Messages and Resends values for both
controllers.

Six safeethernet profiles are available. Select the safeethernet profile the most suitable for
the transmission path.

For safety-related process data communication, only the profiles "Fast&Noisy",
"Medium&Noisy" and "Slow&Noisy" may be used.

Fast & Cleanroom Not suitable foor safety-related process data communication!

Fast & Noisy

Medium & Cleanroom Not suitable foor safety-related process data communication!

Medium & Noisy

Slow & Cleanroom Not suitable foor safety-related process data communication!

Slow & Noisy

4.7.6 Profile I (Fast & Cleanroom)

 NOTE

Not suitable foor safety-related process data communication!
For safety-related process data communication, only the profiles "Fast&Noisy",
"Medium&Noisy" and "Slow&Noisy" may be used.

Use

The Fast & Cleanroom profile is suitable applications in ideal environments such as
laboratories!

4 safeethernet Communication

Page 52 of 344 HI 801 101 E Rev. 3.00

 For the fastest data throughput
 For applications requiring fast data transmission
 For application requiring a worst case reaction time as low as possible

Network requirements:

 Fast: 100 Gbit/100 Mbit technology, 1 Gbit technology
 Clean: trouble-free network. Avoid data loss due to network overload, external

influences or network manipulation.
 LAN switches are necessary!

Communication path characteristics:

 Minimum delays
 Expected ResponseTime ≤ ReceiveTMO

(otherwise ERROR during configuration)

4.7.7 Profile II (Fast & Noisy)

Use

The Fast & Noisy profile is the SILworX default profile for communicating via safeethernet.

 For fast data throughput
 For applications requiring fast data transmission
 For application requiring a worst case reaction time as low as possible

Network requirements:

 Fast: 100 Gbit/100 Mbit technology, 1 Gbit technology
 Noisy: Non-trouble-free network.

Low probability of data packet loss
time for ≥ 1 resends

 LAN switches are necessary!

Communication path characteristics:

 Minimum delays
 Expected ResponseTime ≤ ReceiveTMO / 2

(otherwise ERROR during configuration)

4.7.8 Profile III (Medium & Cleanroom)

 NOTE

Not suitable foor safety-related process data communication!
For safety-related process data communication, only the profiles "Fast&Noisy",
"Medium&Noisy" and "Slow&Noisy" may be used.

Use

The Medium & Cleanroom profile is only suitable in a trouble-free network for applications
that require a moderate fast data transmission.

 For medium data throughput
 Suitable for Virtual Private Networks (VPN) in which data is slow but fault-free as it is

exchanged via intermediate safety devices (firewalls, encryption).
 Suitable for applications in which the worst case reaction time is not a critical factor

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 53 of 344

Network requirements:

 Medium: 10 Mbit (10 Base T), 100 Mbit (100 Base TX), 1 Gbit technology
 LAN switches are necessary!
 Clean: trouble-free network. Avoid data loss due to network overload, external

influences or network manipulation.
Time for ≥ 0 resends

Communication path characteristics:

 Moderate delays
 Expected ResponseTime ≤ ReceiveTMO

(otherwise ERROR during configuration)

4.7.9 Profile IV (Medium & Noisy)

Use

The Medium & Noisy profile is suitable for applications that require moderate fast data
transmission

 For medium data throughput
 For applications requiring moderate fast data transmission
 Suitable for applications in which the worst case reaction time is not a critical factor

Network requirements:

 Medium: 10 Mbit (10 Base T), 100 Mbit (100 Base TX), 1 Gbit technology
 LAN switches are necessary!
 Noisy: Non-trouble-free network.

Low probability of data packet loss
time for ≥ 1 resends

Communication path characteristics:

 Moderate delays
 Expected ResponseTime ≤ ReceiveTMO / 2

(otherwise ERROR during configuration)

4.7.10 Profile V (Slow & Cleanroom)

 NOTE

Not suitable foor safety-related process data communication!
For safety-related process data communication, only the profiles "Fast&Noisy",
"Medium&Noisy" and "Slow&Noisy" may be used.

Use

The Slow & Cleanroom profile is suitable for applications in a trouble-free network that
require a slow data transmission.

 For slow data throughput
 For applications that only require a slow data transmission to controllers (potentially

located far away) or if the communication path conditions cannot be anticipated.

Network requirements:

4 safeethernet Communication

Page 54 of 344 HI 801 101 E Rev. 3.00

 Slow: Data transfer via ISDN, dedicated line or radio relay.
 Clean: trouble-free network. Avoid data loss due to network overload, external

influences or network manipulation.
Time for ≥ 0 resends

Communication path characteristics:

 Moderate delays
 Expected ResponseTime = ReceiveTMO

(otherwise ERROR during configuration)

4.7.11 Profile VI (Slow & Noisy)

Use

The Slow & Noisy profile is suitable for applications that only require a slow data
transmission to controllers (potentially located far away).

 For slow data throughput
 For applications; generally for data transfer via bad telephone lines or disturbed radio

relays.

Network requirements:

 Slow: Data transfer via telephone, satellite, radio etc.
 Noisy: Non-trouble-free network.

Low probability of data packet loss
time for ≥ 1 resends

Communication path characteristics:

 Moderate to important delays
 Expected ResponseTime ≤ ReceiveTMO / 2

(otherwise ERROR during configuration)

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 55 of 344

4.8 Cross-Project Communication
Cross-project communication is used to ensure that resources located in different projects
can exchange process variables with one another.

The communication between two projects is occurs via safeethernet and is configured in
the safeethernet Editor.

Figure 13: safeethernet Connection between Resource A1 in Project A and Resource B1
in Project B

The project in which the safeethernet connection is configured and the configuration file is
created is referred to as 'local project'.

The project to which the configuration file is imported is referred to as 'target project'.

The local and the target projects are equal communication partners when they exchange
data.

A proxy resource serves as placeholder for the corresponding resource from an external
project and is used for importing and exporting the safeethernet connections.

Proxy resource B1 in Project A is the placeholder for Resource B1 from Project B.

Proxy Resource A1 in Project B is the placeholder for Resource A1 from Project A.

In the local project (in the example: Project A), the proxy resource (in the example: Proxy
Resource B1) must be created and configured manually. Once the configuration is
completed, the configuration file (in the example: File_A1.prs) must be imported to the
target project (in the example: Resource B1).

The File_A1.prs configuration file contains the entire description of Resource A1 for the
safeethernet connection with Resource B1. Proxy Resource A1 is automatically created in
Project B after importing the File_A1.prs configuration file to Resource B1.

4 safeethernet Communication

Page 56 of 344 HI 801 101 E Rev. 3.00

4.8.1 Variants for Cross-Project Communication
In both of the following variants, Project A and Project B communicate with one another via
safeethernet.

The local project is Project A in the first variant and Project B in the second variant. The
user may decide in which project the configuration should be created.

Both options require the same amount of work and result in the same configuration.

Local Project A
In the local Project A, the user configures communication with target Project B and creates
the configuration files. This has the advantage that the user must only manually create
Proxy Resource B1 in the local project.

Local project -> target project

Figure 14: Variant: Project A as Local Project

Local Project B
In the local Project B, the user configures communication with target Project A and creates
the configuration files. This has the disadvantage that the user must manually create both
Proxy Resource A1 and Proxy Resource A2 in the local project B.

Local project -> target project

Figure 15: Variant: Project B as Local Project

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 57 of 344

4.9 Cross-Project Communication between SILworX and ELOP II Factory
This example shows how to configure a safeethernet connection between HIMax and
HIMatrix.

Figure 16: Configuring Communication between SILworX and ELOP II Factory

Open the resource in the target project (HIMatrix) that should serves as proxy resource in
the local project (HIMax).

For this target resource, determine the following parameters:

 System ID
 Safety Time [ms]
 Watchdog Time [ms]
 IP Address

i
The resource properties are safety-relevant and are subjected to restrictions. For more
information, refer to the Safety Manual HI 801 003.

4.9.1 Configuring the HIMax in a SILworX Project
Creating the Proxy Resource
A proxy resource serves as placeholder for a resource in an external project and is used for
importing and exporting the safeethernet connections.

To create a proxy resource in the local project

1. Open the local project in which the proxy resource should be created.
2. In the structure tree, open Configuration.
3. Right-click Configuration, and then click New, Proxy Resource ELOP II Factory.

 A new proxy resource is created.

4 safeethernet Communication

Page 58 of 344 HI 801 101 E Rev. 3.00

To configure a proxy resource in the local project

1. Right-click the proxy resource, and then click Properties.
2. Enter a unique name in the Name field.

Use the name of the resource in the target project for the proxy resource in the local
project.

3. Enter the System ID, Safety Time [ms] and Watchdog Time [ms] previously
calculated for this proxy resource.

4. Click OK. The remaining parameters can retain the default values.

To open the structure tree for the proxy resource

1. Right-click Hardware, and then click Edit, HIMatrix Proxy.
2. Click OK to confirm. The Hardware Editor for the proxy resource appears.

Figure 17: HIMatrix Proxy Resource

3. Double-click the COM Module and enter the IP address calculated for the proxy
resource.

4. Click the Save button or Save on the Window menu, then click Close.
5. Repeat these steps for every further proxy resource contained in the local project.

Connecting the Local Resource to the Proxy Resource
In the safeethernet Editor, create a safeethernet connection between the locale and the
proxy resource.

To open the safeethernet Editor of the local resource

1. In the structure tree, open Configuration, Resource.
2. Right-click safeethernet, then select Edit. The new proxy resource is created in the

Object Panel.

To create the safeethernet connection to the proxy resource

1. In the Object Panel, drag the proxy resource anywhere in the workspace of the
safeethernet Editor.

2. Select Ethernet interfaces on the local and proxy resource.
The following parameters determine the data throughput and the fault and collision
tolerance of the safeethernet connection.

7 Select the Network Profile for the safeethernet connection (e.g., Fast&Noisy).
8. Calculate and enter Receive Timeout and Response Time.

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 59 of 344

Example of parameter values for a safeethernet connection to a Proxy resource:

Figure 18: Parameter for a safeethernet Connection to a Proxy Resource

Connecting Process Variables
Connect the process variables in the Detail View of the safeethernet connection.

To open the Detail View of a safeethernet connection

Requirement: The safeethernet Editor of the local resource must be opened.

1. Right-click the Proxy Resource line and open Proxy Resource.
2. Select Detail View on the context menu to open the Detail View of the safeethernet

connection..
3. Select the Resource<->Proxy Resource tab.

To add safeethernet send variables

Send variables are sent from the local to the proxy resource.

1. Select the Resource->Proxy Resource area.
2. In the Object Panel, select a Global Variable and drag it onto the Resource (target)-

>Resource (local) column.
3. Repeat these steps for every further safeethernet send variables.

To add safeethernet receive variables

Receive variables are received by the local resource.

1. Select the Resource<-Proxy Resource area.
2. In the Object Panel, select a Global Variable and drag it onto the Resource (target)<-

Resource (local) column.
3. Repeat these steps for every further safeethernet receive variables.

4 safeethernet Communication

Page 60 of 344 HI 801 101 E Rev. 3.00

Exporting the Configuration File from SILworX
The safeethernet connection configured in SILworX must be exported as configuration file
with the extension *.prs. This configuration file can be imported to ELOP II Factory to
establish the safeethernet connection for the HIMatrix controller.

To export a safeethernet connection

1. Click Proxy Resource in the safeethernet Editor and open the context menu.
2. Click Export Connection with Proxy Resource:

A standard dialog box for saving a file appears.
3. Enter a file name for the configuration file and save it with the extension *.prs.
4. Close the local project.

Figure 19: safeethernet Connection Export

To verify the safeethernet connection

1. In the structure tree, open Configuration, Resource, safeethernet.
2. Click the Verification button on the Action Bar, and then click OK to confirm the action.
3. Thoroughly verify the messages contained in the Status Viewer and correct potential

errors.

i
Recompile the configuration of the safeethernet connection and the user program of the
HIMax resource, and transfer them to the controllers. Only after this step, the new
configurations can be used for communicating with HIMax system

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 61 of 344

4.9.2 Configuring a HIMatrix in an ELOP II Factory Project

To import the configuration file to the (HIMatrix) target project

1. Start ELOP II Factory.
2. Open the HIMatrix target project to which the configuration file should be imported.
3. In the structure tree, select the target resource and open the context menu.
4. Select Import Connections:

A dialog box for importing a file with the extension *.prs opens.
5. Select the configuration file created in the local HIMax project, and click OK.

 Once the configuration file has been imported, the local HIMax resource is
automatically created as proxy resource in the HIMatrix target project.

Figure 20: Importing Connections in ELOP II Factory

Assigning ELOP II Factory Process Signals
Connect process signals in the (HIMatrix) target resource.

Select Signals, Editor on the menu bar to open the Signal Editor.

To open the P2P Editor for the target resource in ELOP II Factory

1. In the structure tree, open Configuration, Resource, P2P Editor.
2. Enter the HH Network for this connection in the P2P Editor.
3. In the P2P Editor, click Connect Process Signals.

Figure 21: P2P Editor in ELOP II Factory

i
Note that both communication partners must use the same profile and the same settings
(automatically adopted while importing the configuration file).

4 safeethernet Communication

Page 62 of 344 HI 801 101 E Rev. 3.00

To assign the P2P send signals

P2P send signals are sent from the HIMatrix resource to the HIMax resource.

1. Select the HIMatrix Resource-> HIMax Proxy Resource tab.
The tab contains the imported P2P send signals..

2. In the Signal Editor, drag a process signal onto the send signal to be connected and
located in the P2P Process Signals dialog box.

3. Repeat these steps for every further P2P send signal.

Figure 22: Assigning Send Signals in ELOP II Factory

To assign the P2P receive signals

P2P receive signals are received by the HIMatrix resource.

1. Select the Resource<-Proxy Resource tab.
The tab contains the imported P2P receive signals.

2. In the Signal Editor, drag a process signal onto the receive signal to be connected and
located in the P2P Process Signals dialog box.

3. Repeat these steps for every further P2P receive signal.

Figure 23: Assigning Receive Signals in ELOP II Factory

i
For more information on how to connect process signals in ELOP II Factory, refer to the
ELOP II Factory online help.

i
Recompile the configuration of the P2P connection and the user program of the HIMatrix
resource, and transfer them to the controllers. Only after this step, the P2P connection is
active for the HIMatrix system.

Communication 4 safeethernet

HI 801 101 E Rev. 3.00 Page 63 of 344

4.10 Control Panel (safeethernet)
The Control Panel can be used to verify and control the safeethernet connection settings.
Details about the current status of the safeethernet connection (e.g., cycle time, bus state,
etc.) are also displayed.

To open Control Panel for monitoring the safeethernet connection

1. In the structure tree, click Resource.
2. Right click the resource, and then click Online.
3. In the System Log-in window, enter the access data to open the Control Panel for the

resource.
4. In the structure tree associated with the Control Panel, select safeethernet.

Figure 24: Control Panel for Connection Control

Reset statistical data

This function is used to reset the statistical data (cycle [min], cycle [max], etc.) to zero.

To reset the statistical data of the safeethernet connection

1. In the structure tree, select the safeethernet connection.
2. Right-click the safeethernet connection, and then select Reset safeethernet

Statistics.

4 safeethernet Communication

Page 64 of 344 HI 801 101 E Rev. 3.00

4.10.1 View Box (safeethernet Connection)
The view box displays the following values of the selected safeethernet connection:

Element Description
Name Resource name of the communication partner
SRS System.Rack.Slot
Connection State State of the safeethernet connection

(See also Chapter 4.4)
Receive timeout [ms] (See also Chapter 4.6.2)
Resend timeout [ms] (See also Chapter 4.6.5)
Acknowledge timeout [ms] (See also Chapter 4.6.6)
Min. RspT [ms]
Max. RspT [ms]
Last RspT [ms]
Av. RspT [ms]

Actual response time as minimum, maximum, last and
average value. See also Chapter 4.6.3.

Bad Messages Number of rejected messages since statistics reset.
Repeats Number of reconnections since statistics reset [UDINT].
Number of Successful
Connections

Number of successful connections since statistics reset.

Early Queue Usage Number of messages stored in Early Queue since
statistics reset. See also Chapter 4.6.8.

Frame No. Current sent counter.
Ack.Frame No. Current reception counter.
Monotony Current count for user data sending.
Layout Version Signature of the current communication send point.
New Layout Version Signature of the new communication send point.
Connection Control Connection control state.

See also Chapter 4.4.
Transmission Control Ch1 Enable of transmission path Ch1.

See also Chapter 4.4.
Transmission Control Ch2 Enable of transmission path Ch2.

See also Chapter 4.4.
Quality of Channel 1 State of transmission path Ch1.

See also Chapter 4.4.
Quality of Channel 2 State of transmission path Ch2.

See also Chapter 4.4.
Late Received Redundant
Messages

With redundant transmission paths.
Number of late received messages since statistics reset.

Lost Redundant Messages With redundant transmission paths.
Number of messages received on one of the two
transmission paths since statistics reset.

Protocol Version 0 and 1 = Precedent protocol version for HIMatrix < V7
2 = New protocol version for HIMax

Table 29: View Box of the safeethernet connection

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 65 of 344

5 PROFINET IO
PROFINET IO is the transfer protocol provided by PNO Germany and is based on Ethernet
technology.

With PROFINET IO, such as with PROFIBUS DP, the remote field devices are integrated in
SILworX via a device description (GSDML file).

The HIMA PROFINET IO controller complies with Conformance Class A and supports non-
real time (NRT) and real time (RT) communication with the PROFINET IO devices. In
particular, real time communication is automatically used for time critical data exchange
and non-real time communication for non time critical processes, such as acyclic read/write
operations.

A redundant PROFINET IO connection can only be implemented by configuring a second
PROFINET IO controller/device and adjusting it in the user program.

5.1 PROFINET IO Function Blocks
To acyclically exchange data, function blocks with the same functionality as with
PROFIBUS DP are available in SILworX. The PROFINET IO function blocks are used to
tailor the HIMA PROFINET IO controller and the corresponding PROFINET IO device to
best meet the project requirements.

The following PROFINET IO function blocks are available:

Function block Function description
MSTAT 6.9.1 Controlling the controller state using the user program
RALRM 6.9.2 Reading the alarm messages of the devices
RDREC 6.9.4 Reading the acyclic data records of the devices
SLACT 6.9.5 Controlling the device states using the user program
WRREC 6.9.6 Writing the acyclic data records of the devices
Table 30: Overview of PROFINET IO Function Blocks

The PROFINET IO function blocks are configured such as the PROFIBUS DP function
blocks, see Chapter 6.9.

5 PROFINET IO Communication

Page 66 of 344 HI 801 101 E Rev. 3.00

5.2 HIMA PROFINET IO Controller
This chapter describes the characteristics of the HIMA PROFINET IO controller and the
menu functions and dialog boxes required to configure the HIMA PROFINET IO controller
in SILworX.

5.3 System Requirements
Equipment and system requirements

Element Description
Controller HIMax with COM module
Processor module The Ethernet interfaces on the processor module may not be used

for PROFINET IO .
COM module Ethernet 10/100BaseT.
Activation Software activation code required, see Chapter 3.5.

Table 31: Equipment and System Requirements for the PROFINET IO Controller.

PROFINET IO Controller Properties

Element Description
Safety-related No
Transfer rate 100 Mbit/s full duplex
Transmission path Ethernet interfaces on the COM module

Ethernet interfaces in use can simultaneously be
used for additional protocols.

Conformity class The PROFINET IO controller meets the
requirements for Conformance Class A.

Max. number of
PROFINET IO controller

One PROFINET IO controller can be configured for
each COM module.

Max. number of
PROFINET IO devices application
relations (ARs)

A PROFINET IO controller can establish an
application relation (AR) with a maximum of 64
PROFINET IO devices.

Max. number of communication
relations (CRs for each AR)

Max. 5 communication relations (CRs) for each AR
und direction

Max. process data length of a CR Output: max 1440 bytes
Input: max. 1440 bytes (RT frame over UDP)

Data Priorization Possible at device level using the Reduction Rate
setting.

Interconnecting PROFINET and
PROFIBUS

To do this, a PROFINET IO device with proxy
functionality is required.

Table 32: PROFINET IO Controller Properties

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 67 of 344

5.4 PROFINET IO Example
This example illustrates how to connect the HIMA PROFINET IO controller to any kind of
PROFINET IO devices.

5.4.1 Creating a HIMA PROFINET IO Controller in SILworX
To create a new HIMA PROFINET IO controller

1. In the structure tree, open Configuration, Resource, Protocols.
2. Select New, PROFINET IO Controller on the context men for protocols to add a new

PROFINET IO controller.
3. Select Properties on the context menu for PROFINET IO controller.
4. Click COM Module.

Configuring the PROFINET IO Device with SILworX

To create a HIMax PROFINET IO Device within the PROFINET IO controller

1. Select New, PROFINET IO Device on the context menu for the PROFINET IO
controller.

To read the GSDML library file from an external data source (e.g., CD, USB stick,
Internet):

1. On the structure tree, select Configuration, Resource, Protocols, PROFINET IO
Controller, GSDML Library.

2. Select Add GSDML File on the context menu for the GSDML library and read the
GSDML file specific to the PROFINET IO device.

i
The GSDML library file usually contains several devices from one manufacturers.

To load the GSDML file for a new PROFINET IO device

1. On the structure tree, select Configuration, Resource, Protocols, PROFINET IO
Controller, PROFINET IO Device.

2. Select Properties on the context menu and open the Parameter tab.

3. On the drop-down menu for GSDML File, select the GSDML library file specific to
PROFINET IO device and close Properties.

To select the data access point (DAP) for the PROFINET IO device

1. On the structure tree, select Configuration, Resource, Protocols, PROFINET IO
Controller, PROFINET IO Device, DAP Module.

2. Select Select Device Access Point (DAP) on the context menu and choose a suitable
data record for the PROFINET IO device.

To verify the PROFINET IO configuration

1. In the structure tree, open Configuration, Resource, Protocols, PROFINET IO
 Controller.

2. Click the Verification button on Action Bar, and then click OK to confirm the action.

5 PROFINET IO Communication

Page 68 of 344 HI 801 101 E Rev. 3.00

3. Thoroughly verify the messages contained in the Status Viewer and correct potential
errors.

Identifying the PROFINET IO Device within the Network

To find the PROFINET IO device within the Ethernet network

1. Log-in to the communication module containing the PROFINET IO controller.
2. On the structure tree corresponding to the Online View, select

PROFINET IO Controller, PROFINET IO Station.
3. Select Get PROFINET IO Network Stations.

 A list appears specifying all the PROFINET devices in the network of the current
PROFINET IO controller.

To configure the PROFINET IO device in the Online View:

1. To change the settings, right-click in the list the PROFINET IO device that should be
configured.

2. Name the device using the Name the PROFINET IO Device, context menu function.
 Make sure that the PROFINET IO device name match the project. The name is case
sensitive!

3. Set the IP address, subnet mask and the gateway using the Network Settings context
menu function.

i
In SILworX, the network settings for the PROFINET IO device must be configured in the
PROFINET IO controller, or no communication is possible.

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 69 of 344

5.5 Menu Function in the PROFINET IO Controller

5.5.1 Properties
The Properties menu function on the context menu for the PROFINET IO controller opens
the Properties dialog box.

Element Description
Type PROFINET IO Controller
Name Any unique name for a PROFINET IO controller
Refresh
Rate [ms]

Refresh rate in milliseconds at which the COM and CPU exchange protocol
data.
If the Refresh Rate is zero or lower than the cycle time for the controller,
data is exchanged as fast as possible.

Range of values: 4...(231-1).
Default value: 0

Within one
cycle

Activated:
Transfer of all protocol data from the CPU to the COM within a CPU cycle.

Deactivated:
Transfer of all protocol data from the CPU to the COM, distributed over
multiple CPU cycles, each with 1100 byte per data direction. This can also
allow lowering the cycle time of the controller.

Default value: Activated

Module Selection of the COM module within which the protocol is processed.
Use Max
CPU Load

Activated:
Use CPU load limit from the field Max. CPU Load [%]
Deactivated:
Do not use the CPU Load limit for this protocol.

Max. CPU
Load [%]

Maximum CPU load of module that can be used for processing the
protocols.

Range of values: 1...100%
Default value: 30%

RPC Port
Server

Remote Procedure Call Port
Range of values: 1024...65535
Default value: 49152
RPC port server and RPC port client must not be identical!

RPC Port
Client

Remote Procedure Call Port
Range of values: 1024...65535
Default value: 49153
RPC port server and RPC port client must not be identical!

Table 33: PROFINET IO Controller General Properties

5 PROFINET IO Communication

Page 70 of 344 HI 801 101 E Rev. 3.00

5.6 Menu Functions for PROFINET IO Device (within the Controller)

Figure 25: Structure Tree for the PROFINET IO Controller

5.6.1 Properties
The Properties menu function on the context menu for the PROFINET IO device opens the
Properties dialog box. The dialog box contains the following tabs:

Tab Parameter
Element Description
Name Any unique name for the PROFINET IO device
Slot Range of values: 0...125

Default value: 0
IP Address Target IP address of the communication partner (with direct host routing)

or network address (with subnet routing).
Range of values: 0.0.0.0 ... 255.255.255.255
Default value: 0.0.0.0
Do not use IP addresses already in use, see Chapter 3.6.3.

Subnet Mask Define the target address range for a routing entry.
255.255.255.255 (with direct host routing) or subnet mask of the
addressed subnet.
Range of values: 0.0.0.0 ... 255.255.255.255
Default value: 255.255.255.255

Gsdml File GSDML stands for Generic Station Description Markup Language and
refers to an XML-based description language.
The GSDML file contains the PROFINET device master data

Table 34: Parameter Tab des PROFINET-IO Device

The tabs Model and Features are self-explanatory providing an additional description and
specifying the equipment of the input/output PROFINET IO modules.

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 71 of 344

5.6.2 DAP Module (Device Access Point Module)
The DAP module (Device Access Point module) is used for connecting the bus, it always
accompanies a PROFINET device and is located below it. The DAP module is a default
directory and cannot be deleted.

The Properties function on the context menu for the DAP module opens the Properties
dialog box. The dialog box contains the following tabs:

Tab Parameter
Element Description
Name Any unique name for the DAP module.
Slot Not changeable

Default value: 0
Table 35: Parameter Tab in the Properties Dialog Box for the DAP Module

The tabs Model and Features are self-explanatory and provide an additional description of
the DAP module.

5.6.3 Input/Output PROFINET IO Modules
The PROFINET IO input modules are used to enter the HIMax PROFINET IO controller
input variables that are sent by the PROFINET IO device.

The PROFINET IO output modules are used to enter the HIMax PROFINET IO controller
output variables that are sent to the PROFINET IO device.

To create the required PROFINET IO Modules
1. In the structure tree, open Configuration, Resource, Protocols, PROFINET IO

Device.
2. Select New on the context menu for the PROFINET IO device.
3. Select the modules required.

The Properties menu function on the context menu for the nput/output PROFINET IO
modules opens the Properties dialog box. The dialog box contains the following tabs:

Tab Parameter
Element Description
Name Name of the input/output PROFINET IO modules
Slot 0 to 32767

Default value: 1
Table 36: Parameter Tab of the I/O PROFINET IO Modules

The tabs Model and Features are self-explanatory providing an additional description and
specifying the equipment of the input/output PROFINET IO modules.

5 PROFINET IO Communication

Page 72 of 344 HI 801 101 E Rev. 3.00

5.6.4 Input Submodule
The submodule parameters are used to define the communication relation of the module
and its behavior after connection is interrupted.

Properties
The Properties function on the context menu for the input submodule opens the
Properties dialog box. The dialog box contains the following tabs:

Tab Parameter
Element Description
Name Name of the input submodule
Sub-Slot Not changeable

Default value: 1
IO Data CR, Inputs Selection of the communication relation (CR)

to which the submodule inputs should be
transferred.
- None
- Default Input CR

Input data accepted by Controller Selection of the communication relation (CR)
to which the submodule IO consumer status
(CS) should be transferred.
- None
- Default Output CR

Shared Input Activated Several PROFINET IO
controllers can access the
inputs.

Deactivated Only one PROFINET IO
controller can access the
inputs.

Input Values When IO CR is Disconnected Behavior of the input variables for this
PROFINET IO submodule after the
connection is interrupted.
Retain Last
Value

The input variables are
freezed to the current value
and used until a new
connection is established.

Adopt Initial
Values

The initial data are used for
the input variables.

Table 37: Properties Dialog Box for the Input Submodule

The tabs Model and Features are self-explanatory providing an additional description and
specifying the equipment of the input submodule.

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 73 of 344

Edit
The Edit function on the context menu for the input submodule opens the Edit dialog box.
The dialog box contains the following tabs:

The System Variables tab contains the following system variables that are required to
evaluate the state of the PROFINET IO submodule from within the user program.

Element Description
Valid input data True Valid input data

GOOD
False Invalid input data

BAD_BY_DEVICE,
BAD_BY_CONTROLLER

Input data accepted by Controller True Valid input data
GOOD

False Invalid input data
BAD_BY_SUBSLOT,
BAD_BY_SLOT,
BAD_BY_DEVICE,
BAD_BY_CONTROLLER.

Table 38: Edit Dialog Box for the Input Submodule

The Process Variables tab is used to enter the input variables.

5.6.5 Submodule Output
The submodule parameters are used to define the communication relation of the module
and its behavior after connection is interrupted.

Properties
The Properties function on the context menu for the output submodule opens the
Properties dialog box. The dialog box contains the following tabs:

Tab Parameter
Element Description
Name Name of the output submodule
Sub-Slot Not changeable

Default value: 1
IO Data CR, Outputs Selection of the communication relation (CR)

to which the submodule outputs should be
transferred.
- None
- Default Input CR

Output Data Accepted by Device Selection of the communication relation (CR)
to which the submodule IO consumer status
(CS) should be transferred.
- None
- Default Output CR

Table 39: Properties Dialog Box for the Input Submodule

The tabs Model and Features are self-explanatory providing an additional description and
specifying the equipment of the input submodule.

5 PROFINET IO Communication

Page 74 of 344 HI 801 101 E Rev. 3.00

Edit
The Edit function on the context menu for the output submodule opens the Edit dialog box.
The dialog box contains the following tabs:

The System Variables tab contains the following system variables that are required to
evaluate the state of the PROFINET IO submodule from within the user program.

Element Description
Valid output data True Valid output data

GOOD
False Invalid output data

BAD_BY_DEVICE,
BAD_BY_CONTROLLER

Output Data Accepted by Device True Valid output data
GOOD

False Invalid output data
BAD_BY_SUBSLOT,
BAD_BY_SLOT,
BAD_BY_DEVICE,
BAD_BY_CONTROLLER.

Table 40: Edit Dialog Box for the Output Submodule

The Process Variables tab is used to enter the output variables.

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 75 of 344

5.6.6 Input and Output Submodule
The submodule parameters are used to define the communication relation of the module
and its behavior after connection is interrupted.

Properties
The Properties function on the context menu for the input/output submodule opens the
Properties dialog box. The dialog box contains the following tabs:

Tab Parameter
Element Description
Name Name of the input/output submodule
Sub-Slot Not changeable

Default value: 1
IO Data CR, Inputs Selection of the communication relation (CR)

to which the submodule inputs should be
transferred.
- None
- Default Input CR

IO Data CR, Outputs Selection of the communication relation (CR)
to which the submodule outputs should be
transferred.
- None
- Default Output CR

Input data accepted by Controller Selection of the communication relation (CR)
to which the submodule IO consumer status
(CS) should be transferred.
- None
- Default Output CR

Output Data Accepted by Device Selection of the communication relation (CR)
to which the submodule IO consumer status
(CS) should be transferred.
- None
- Default Input CR

Input Values When IO CR is Disconnected - Retain Last Value
- Adopt Initial Values

Table 41: Properties Dialog Box for the Input/Output Submodule

The tabs Model and Features are self-explanatory providing an additional description and
specifying the equipment of the input/output submodule.

5 PROFINET IO Communication

Page 76 of 344 HI 801 101 E Rev. 3.00

Edit
The Edit function on the context menu for the input/output submodule opens the Edit
dialog box. The dialog box contains the following tabs:

The System Variables tab contains the following system variables that are required to
evaluate the state of the PROFINET IO submodule from within the user program.

Element Description
Valid output data True Valid output data

GOOD
False Invalid output data

BAD_BY_DEVICE,
BAD_BY_CONTROLLER

Output Data Accepted by Device True Valid output data
GOOD

False Invalid output data
BAD_BY_SUBSLOT,
BAD_BY_SLOT,
BAD_BY_DEVICE,
BAD_BY_CONTROLLER.

Valid input data True Valid input data
GOOD

False Invalid input data
BAD_BY_DEVICE,
BAD_BY_CONTROLLER

Input data accepted by Controller True Valid input data
GOOD

False Invalid input data
BAD_BY_SUBSLOT,
BAD_BY_SLOT,
BAD_BY_DEVICE,
BAD_BY_CONTROLLER.

Table 42: Edit Dialog Box for the Input/Output Submodule

The Process Variables tab is used to enter the input and output variables in their
corresponding area.

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 77 of 344

5.6.7 Application Relation
An application relation (AR) is a logic construct for enabling data exchange between
controller and device. Data are transferred within the application relation via one or up to
five communication relations (CR).

The Properties function on the context menu for application relation opens the Properties
dialog box.

Element Description
Name Not changeable
UDP RT Port Controller UDP port of the controller

Not changeable
AR UUID Code for unambiguously identifying the application

relation (AR).
Not changeable

Connection Establishment Timeout
Factor

From the perspective of the PROFINET IO device,
this parameter is used during the creation of a
connection to calculate the maximum time allowed
between sending the response on the connect
request and receiving a new request from the a
PROFINET IO controller.
Range of values: 1 - 1000 (x 100 ms)
Default value: 600

Supervisor may take over the AR Definition wether a PROFINET IO supervisor may
adopt the application relation (AR).
Older devices from different manufacturer require
this setting.
0 Not Allowed
1 Allowed

Default value: 0

Table 43: Properties Dialog Box for the Application Relation

5 PROFINET IO Communication

Page 78 of 344 HI 801 101 E Rev. 3.00

5.6.8 Alarm CR
Multiple communication relations (CR) can be established within an application relation.

The alarm CR is used by a PROFINET IO device to transmit alarms to the PROFINET IO
controller.

The Properties function on the context menu for application relation opens the Properties
dialog box. The dialog box contains the following parameters:

Element Description
Name Not changeable
VLAN ID, High Priority Each virtual LAN (VLAN) is assigned a unique number to

ensure separation. A device in the VLAN with ID=1 can
communicate with any other device in the same VLAN, but
not with a device in another VLAN (e.g., ID=2, 3, ...).
Range of values: see also IEC 61158-6
0x000 No VLAN

0x001 Standard VLAN
0x002
Up to
0xFFF

See IEEE 802.1 Q

Default value: 0
VLAN ID, Low Priority Description, see VLAN ID, High Priority

Default value: 0
Alarm Priority Use User Priority The priority assigned by the user is

used.
Ignore User
Priority

The priority assigned by the user is
ignored. The generated alarm has
low priority.

Alarm Resends Maximum number of device resends if the controller does
not respond.
Rang of values 3 to 15
Default value: 10

Alarm Timeout Factor The RTA timeout factor is used to calculate the maximum
device time that may elapse after sending a RTA data
(alarm) frame and receiving the RTA ack frame.
RTA timeout = RTA timeout factor x 100 ms

Rang of values 1 to 65535
Default value: 5

Table 44: Properties Dialog Box for the Alarm CR

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 79 of 344

5.6.9 Input CR
Multiple communication relations (CR) can be established within an application relation.

The input CR is used by a PROFINET IO device to transmit variables to the PROFINET IO
controller.

The Properties function on the context menu for the default input CR opens the Properties
dialog box. The dialog box contains the following parameters:

Element Description
Name Any unique name for an input CR

The default input CR cannot be changed
Type 1 (not changeable)
Send Clock Factor The send clock factor defines the send clock for the

cyclic IO CR data transfer.
Send clock = send clock factor x 31.25 µs
Range of values: 1 to 128
Default value: 32

Reduction Factor The redundant factor allows the reduction of the
actual cycle time needed for sending the data of an
IO CR. The actual data cycle time is calculated as
follows:
Sending cycle = reduction factor x send clock

Range of values: 1 to 16384
Default value: 32

Watchdog Factor From the perspective of an IO CR consumer, the
watchdog factor is used to calculate the maximum
time allowed between the reception of two frames:
Watchdog time = watchdog factor x send clock
factor x reduction ratio x 31.25 µs
Range of values: 1 to 7680
Default value: 3

VLAN ID Each virtual LAN (VLAN) is assigned a unique
number to ensure separation. A device in the VLAN
with ID=1 can communicate with any other device in
the same VLAN, but not with a device in another
VLAN (e.g., ID=2, 3, ...).
Range of values: see also IEC 61158-6
0x000 No VLAN

0x001 Standard VLAN
0x002
Up to
0xFFF

See IEEE 802.1 Q

Default value: 0

Table 45: Properties Dialog Box for the Default Input CR

The Edit function on the context menu for the default input CR opens the System
Variables dialog box, and contains the following system variables:

Element Description
Data Status Input CR

Table 46: Edit Dialog Box for the Default Input CR

5 PROFINET IO Communication

Page 80 of 344 HI 801 101 E Rev. 3.00

5.6.10 Output CR
Multiple communication relations (CR) can be established within an application relation.

The output CR is used by the PROFINET IO device to transmit variables to the PROFINET
IO controller.

The Properties function on the context menu for the output CR opens the Properties
dialog box. The dialog box contains the following parameters:

Element Description
Name Any unique name for an output CR

The default output CR cannot be changed
Type 2 (not changeable)
Send Clock Factor The send clock factor defines the send clock for the

cyclic IO CR data transfer.
Send clock = send clock factor x 31.25 µs
Range of values: 1 to 128
Default value: 32

Reduction Factor For setting the transmission frequency.
The redundant factor allows the reduction of the
actual cycle time needed for sending the data of an
IO CR. The actual data cycle time is calculated as
follows:
Sending cycle = reduction factor x send clock

Range of values: 1 to 16384
Default value: 32

Watchdog Factor From the perspective of an IO CR consumer, the
watchdog factor is used to calculate the maximum
time allowed between the reception of two frames:
Watchdog time = watchdog factor x send clock
factor x reduction ratio x 31.25 µs
Range of values: 1 to 7680
Default value: 3

VLAN ID Each virtual LAN (VLAN) is assigned a unique
number to ensure separation. A device in the VLAN
with ID=1 can communicate with any other device in
the same VLAN, but not with a device in another
VLAN (e.g., ID=2, 3, ...).
Range of values: see also IEC 61158-6
0x000 No VLAN

0x001 Standard VLAN
0x002
Up to
0xFFF

See IEEE 802.1 Q

Default value: 0

Table 47: Properties Dialog Box for the Default Output CR

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 81 of 344

5.7 HIMA PROFINET IO Device
This chapter describes the characteristics of the HIMA PROFINET IO device and the menu
functions and dialog boxes required to configure the HIMA PROFINET IO controller in
SILworX.

5.8 System Requirements
Equipment and system requirements

Element Description
Controller HIMax with COM module
Processor module The Ethernet interfaces on the processor module may not be used

for PROFINET IO .
COM module Ethernet 10/100BaseT.
Activation Software activation code required, see Chapter 3.5.

Table 48: Equipment and System Requirements for the PROFINET IO Controller.

PROFINET IO Device Properties

Element Description
Safety-related No
Transfer rate 100 Mbit/s full duplex
Transmission path Ethernet interfaces on the COM module

Ethernet interfaces in use can simultaneously be
used for additional protocols.

Conformity class The PROFINET IO device meets the
requirements for Conformance Class A.

Max. number of
PROFINET IO devices

One PROFINET IO device can be configured for
each COM module.

Max. number of
application relations (ARs) to the
PROFINET IO controller

A PROFINET IO device can establish a maximum
of 5 application relations (ARs) to the PROFINET
IO controllers or supervisors.

Max. number of communication
relations (CRs for each AR)

Max. 5 communication relations (CRs) for each
AR und direction

Max. process data length of all
configured PROFINET IO modules

Output: max. 1440 bytes
Input: max. 1440 bytes

Data Priorization Possible at device level using the Reduction Rate
setting.

Interconnecting PROFINET and
PROFIBUS

To do this, a PROFINET IO device with proxy
functionality is required.

Table 49: PROFINET IO Controller Properties

5 PROFINET IO Communication

Page 82 of 344 HI 801 101 E Rev. 3.00

5.9 PROFINET IO Example
In this example, a HIMA PROFINET IO controller exchanges variables with a HIMA
PROFINET IO .device. This example illustrates how to create and configure the HIMA
PROFINET IO controller and the HIMA PROFINET IO device.

Figure 26: Communication Using PROFINET IO

The communication modules on both HIMax controllers are connected with an Ethernet
cable via the Ethernet interface.

An application relation (AR) is a logic construct for enabling data exchange between
controller and device. In this example, data are transferred within the application relation via
the standard communication relations (alarm CR, default input CR and default output CR).
This communication relations are already configured per default in the input and output
modules.

For this example, the following global variables must be created in SILworX:

Global Variable Type
PN_Device_Controller1 UINT
PN_Device_Controller2 DWORD
PN_Device_Controller3 DWORD
PN_Device_Controller4 BYTE
PN_Controller_Device1 UINT
PN_Controller_Device2 BYTE

5.9.1 Configuring the PROFINET IO Device in SILworX

To create a new HIMA PROFINET IO device
1. In the structure tree, open Configuration, Resource, Protocols.
2. Select New, PROFINET IO Device on the context men for protocols to add a new

PROFINET IO device.
3. Select Properties on the context menu for PROFINET IO controller.
4. Click COM Module.

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 83 of 344

To create the required PROFINET IO Modules
1. In the structure tree, open Configuration, Resource, Protocols, PROFINET IO

Device.
2. Select New on the context menu for the PROFINET IO device.
3. For this example, select the following modules to receive 11 bytes from the PROFINET

IO device and to send 3 bytes.
PROFINET IO module Slot
Out 2 Byte_1 1
Out 8 Bytes_2 2
Out 1 Byte_3 3
In 2 Byte_4 4
In 1 Bytes_5 5

To number the PROFINET IO device modules

1. Right-click the first PROFINET IO device module, and then click Properties.
2. Enter 1 into the Slot field.
3. Repeat these steps for every further PROFINET IO device modules and number the

modules consecutively.

i
Number the HIMax PROFINET IO device modules without gaps and in ascending order,
starting with 1.

Configuring the PROFINET IO Device Output Modules

i
The sum of the variables (in bytes), must identical with the size of the module (in bytes).

To configure the output module [01] Out 2 Bytes_1

1. In the PROFINET IO device, select the output module
[01] Out 2 Bytes_1.

2. Right-click [01] Out 2 Bytes_1 and select Edit on the context menu.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Output Signals area.
Name Type Offset Global Variable
PN_Device_Controller1 UINT 0 PN_Device_Controller1

Table 50: Variables in the Output Module [01] Out 2 Bytes_1

5. Right-click anywhere in the Output Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

To configure the output module [02] Out 8 Bytes_2

1. In the PROFINET IO device, select the output module
[02] Out 8 Bytes_2.

5 PROFINET IO Communication

Page 84 of 344 HI 801 101 E Rev. 3.00

2. Right-click [02] Out 8 Bytes_2 and select Edit on the context menu.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Output Signals area.
Name Type Offset Global Variable
PN_Device_Controller2 DWORD 0 PN_Device_Controller2
PN_Device_Controller3 DWORD 4 PN_Device_Controller3

Table 51: Variables in the Output Module [02] Out 8 Bytes_2

5. Right-click anywhere in the Output Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

To configure the output module [03] Out 1 Bytes_3

1. In the PROFINET IO device, select the output module
[03] Out 1 Bytes_3.

2. Right-click [03] Out 1 Bytes_3 and select Edit on the context menu.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Output Signals area.
Name Type Offset Global Variable
PN_Device_Controller4 Byte 0 PN_Device_Controller4

Table 52: Variables in the Output Module [03] Out 1 Bytes_3

5. Right-click anywhere in the Output Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

Configuring the PROFINET IO Device Input Modules
To configure the input module [04] In 2 Bytes_4
1. In the PROFINET IO device, select the input module

[04] Out 2 Bytes_4.
2. Right-click [04] In 2 Bytes_4 and select Edit on the context menu.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Input Signals area..
Name Type Offset Global Variable
PN_Controller_Device1 UINT 0 PN_Controller_Device1

Table 53: Variables in the Input Module [04] In 2 Bytes_4

5. Right-click anywhere in the Input Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

To configure the input module [05] In 1 Bytes_5
1. In the PROFINET IO device, select the input module

[05] In 1 Bytes_5.
2. Right-click [05] In 1 Bytes_5 and select Edit on the context menu.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Input Signals area..
Name Type Offset Global Variable
PN_Controller_Device2 BYTE 0 PN_Controller_Device2

Table 54: Variables in the Input Module [05] In 1 Byte_5

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 85 of 344

5. Right-click anywhere in the Input Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

To verify the PROFINET IO device configuration

1. In the structure tree, open Configuration, Resource, Protocols, PROFINET IO
Device.

2. Click the Verification button on Action Bar, and then click OK to confirm the action.
3. Thoroughly verify the messages contained in the Status Viewer and correct potential

errors.

i
Use the user program of the PROFINET IO device resource to recompile the configuration
of the PROFINET IO device and transfer it to the controllers. Only after this step, the new
configuration can be used for communication with the PROFINET IO.

5.9.2 Creating a HIMA PROFINET IO Controller in SILworX
To create a new HIMA PROFINET IO controller

1. In the structure tree, open Configuration, Resource, Protocols.
2. Select New, PROFINET IO Controller on the context men for protocols to add a new

PROFINET IO controller.
3. Select Properties on the context menu for PROFINET IO controller.
4. Click COM Module.

Creating a HIMA PROFINET IO Device within the Controller

To create a HIMax PROFINET IO Device within the PROFINET IO controller

1. Select New, PROFINET IO Device on the context menu for the PROFINET IO
controller.

To add the GSDML library file from an external data source (e.g., CD, USB stick,
Internet):

1. On the structure tree, select Configuration, Resource, Protocols, PROFINET IO
Controller, GSDML Library.

2. Select Add GSDML File on the context menu for the GSDML library and read the
GSDML file specific to the PROFINET IO device.

i
The GSDML library file usually contains several devices from one manufacturers.
The HIMA GSDML library file is located on the HIMA Web site at:
GSDML-V2.1-Hima-embex-20090805.xml.

To load the GSDML file for the PROFINET IO device

1. On the structure tree, select Configuration, Resource, Protocols, PROFINET IO
Controller, PROFINET IO Device.

2. Select Properties on the context menu and open the Parameter tab.

- Enter the IP address of the PROFINET IO device.
- On the drop-down menu for GSDML File, select the GSDML library file specific to

PROFINET IO device and close Properties.

5 PROFINET IO Communication

Page 86 of 344 HI 801 101 E Rev. 3.00

To select the data access point (DAP) for the PROFINET IO device

1. On the structure tree, select Configuration, Resource, Protocols, PROFINET IO
Controller, PROFINET IO Device, DAP Module.

2. Select Select Device Access Point (DAP) on the context menu and choose a suitable
data record for the PROFINET IO device.

Creating the HIMax PROFINET IO Controller Modules
The number of bytes that must actually be transferred, must also be configured in the
PROFINET IO controller. To do this, add Modules until the physical configuration of the
device is achieved.

To create the required PROFINET IO Modules
1. On the structure tree, open Configuration, Resource, Protocols, PROFINET IO

Controller, PROFINET IO Device.
2. Select Insert Modules on the context menu.
3. For this example, select the following modules to receive 11 bytes from the PROFINET

IO device and to send 3 bytes.
PROFINET IO module Slot
DAP Module (Device Access
Point)

0

Input 2 Bytes: Module_1 1
Input 8 Bytes: Module_2 2
Input 1 Byte: Module_3 3
Output 2 Bytes: Module_4 4
Output 1 Byte: Module_5 5

To number the PROFINET IO modules

1. Right-click the first PROFINET IO module, and then click Properties.
2. Enter 0 into the Slot field.
3. Repeat these steps for every further PROFINET IO modules and number the modules

consecutively.

i
Number the HIMax PROFINET IO modules without gaps and in ascending order, starting
with 0.

Configuring the PROFINET IO Controller Input Modules

i
The sum of the variables (in bytes), must identical with the size of the module (in bytes).
For this example, the predefined standard communication relations Default Input CR and
Default Output CR are adopted in the submodules of the input and output modules.

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 87 of 344

To configure the input module [001] Input 2 Bytes: Module_1

1. In the PROFINET IO device, select the input module
[001] Input 2 Bytes: Module_1, [00001] Submodule Inputs_1.

2. Right-click [00001] Submodule Inputs_1 and select Edit on the context menu.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Input Signals area..
Name Type Offset Global Variable
PN_Device_Controller1 UINT 0 PN_Device_Controller1

Table 55: Variables in the Input Module [001] Input 2 Bytes: Module_1

5. Right-click anywhere in the Input Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

To configure the input module [002] Input 8 Byte: Module_2

1. In the PROFINET IO device, select the input module
[002] Input 8 Bytes: Module_2, [00001] Submodule Inputs_1.

2. Right-click [00001] Submodule Inputs_1 and select Edit on the context menu.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Input Signals area..
Name Type Offset Global Variable
PN_Device_Controller2 DWORD 0 PN_Device_Controller2
PN_Device_Controller3 DWORD 4 PN_Device_Controller3

Table 56: Variables in the Input Module [002] Input 8 Byte: Module_2

5. Right-click anywhere in the Input Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

To configure the input module [003] Input 1 Byte: Module_3

1. In the PROFINET IO device, select the input module
[003] Input 1 Byte: Module_1, [00001] Submodule Inputs_1.

2. Right-click [00001] Submodule Inputs_1 and select Edit on the context menu.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Input Signals area.
Name Type Offset Global Variable
PN_Device_Controller4 Byte 0 PN_Device_Controller4

Table 57: Variables in the Input Module [003] Input 1 Byte: Module_3

5. Right-click anywhere in the Input Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

Configuring the PROFINET IO Controller Output Modules
To configure the output module [004] Output 2 Bytes: Module_4
1. In the PROFINET IO device, select the output module

[004] Output 2 Bytes: Module_4, [00001] Submodule Inputs_1.
2. Right-click [00001] Submodule Inputs_1 and select Edit on the context menu.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Output Signals area.

5 PROFINET IO Communication

Page 88 of 344 HI 801 101 E Rev. 3.00

Name Type Offset Global Variable
PN_Controller_Device1 UINT 0 PN_Controller_Device1

Table 58: Variables in the Output Module [004] Out 2 Bytes: Module_4

5. Right-click anywhere in the Output Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

To configure the output module [005] Output 1 Bytes: Module_5
1. In the PROFINET IO device, select the output module

[005] Output 1 Byte: Module_5, [00001] Submodule Inputs_1.
2. Right-click [00001] Submodule Inputs_1 and select Edit on the context menu.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Output Signals area.
Name Type Offset Global Variable
PN_Controller_Device2 BYTE 0 PN_Controller_Device2

Table 59: Variables in the Output Module [005] Out 1 Bytes: Module_5

5. Right-click anywhere in the Output Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

5.9.3 Menu Function Properties
The Properties menu function on the context menu for the PROFINET IO device opens the
Properties dialog box.

Element Description
Type PROFINET IO device
Name Any unique name for a PROFINET IO device
Refresh
Rate [ms]

Refresh rate in milliseconds at which the COM and CPU exchange protocol
data.
If the Refresh Rate is zero or lower than the cycle time for the controller,
data is exchanged as fast as possible.

Range of values: 4...(231-1).
Default value: 0

Within one
cycle

Activated:
Transfer of all protocol data from the CPU to the COM within a CPU cycle.

Deactivated:
Transfer of all protocol data from the CPU to the COM, distributed over
multiple CPU cycles, each with 1100 byte per data direction. This can also
allow lowering the cycle time of the controller.

Default value: Activated

Module Selection of the COM module within which the protocol is processed.
Use Max
CPU Load

Activated:
Use CPU load limit from the field Max. CPU Load [%]
Deactivated:
Do not use the CPU Load limit for this protocol.

Max. CPU
Load [%]

Maximum CPU load of module that can be used for processing the
protocols.

Range of values: 1...100%
Default value: 30%

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 89 of 344

RPC Port
Server

Remote Procedure Call Port
Range of values: 1024...65535
Default value: 49152
RPC port server and RPC port client must not be identical!

RPC Port
Client

Remote Procedure Call Port
Range of values: 1024...65535
Default value: 49153
RPC port server and RPC port client must not be identical!

RT Port
Controller

RT Port
Range of values: 1024...65535
Default value: 34962

Table 60: PROFINET IO Device General Properties

5 PROFINET IO Communication

Page 90 of 344 HI 801 101 E Rev. 3.00

5.9.4 PROFINET IO Modules
The following PROFINET IO modules are available in the HIMA PROFINET IO device.

PROFINET IO module Max. size for the

input variables
Max. size for the
output variables

In 1 byte 1 byte
In 2 bytes 2 bytes
In 4 bytes 4 bytes
In 8 bytes 8 bytes
In 16 bytes 16 bytes
In 32 bytes 32 bytes
In 64 bytes 64 bytes
In 128 bytes 128 bytes
In 256 bytes 256 bytes
In 512 bytes 512 bytes
In 1024 bytes 1024 bytes
In-Out 1 byte 1 byte 1 byte
In-Out 2 bytes 2 bytes 2 bytes
In-Out 4 bytes 4 bytes 4 bytes
In-Out 8 bytes 8 bytes 8 bytes
In-Out 16 bytes 16 bytes 16 bytes
In-Out 32 bytes 32 bytes 32 bytes
In-Out 64 bytes 64 bytes 64 bytes
In-Out 128 bytes 128 bytes 128 bytes
In-Out 256 bytes 256 bytes 256 bytes
In-Out 512 bytes 512 bytes 512 bytes
In-Out 1024 bytes 1024 bytes 1024 bytes
Out 1 byte 1 byte
Out 2 bytes 2 bytes
Out 4 bytes 4 bytes
Out 8 bytes 8 bytes
Out 16 bytes 16 bytes
Out 32 bytes 32 bytes
Out 64 bytes 64 bytes
Out 128 bytes 128 bytes
Out 256 bytes 256 bytes
Out 512 bytes 512 bytes
Out 1024 bytes 1024 bytes

Table 61: PROFINET IO Device General Properties

Communication 5 PROFINET IO

HI 801 101 E Rev. 3.00 Page 91 of 344

To create a PROFINET IO module
1. In the structure tree, open Configuration, Resource, Protocols, PROFINET IO

Device.
2. Select New on the context menu for the PROFINET IO device.
3. Right-click PROFINET IO module and select Edit.

- Enter the input and/or output variables in the Process Variables tab.
- The System Variables can be used to assign global variables to both system

variables and use them in the user program

Element Type
Valid output data BOOL
Accept the output data from the controller BOOL

- The Properties tab specifies the following parameters.
Element Description
Name Name of the PROFINET IO device module
Slot 0 to 32767
Module ID Unique number
IO type 1 In

2 Out
3 In-Out

Process data after termination Process data value after the connection is interrupted
- Retain last valid process data
- Adopt initial data

Length of IO Input Data 0 ...1024
Length of IO Output Data 0 ...1024

Table 62: PROFINET IO Device General Properties

6 PROFIBUS DP Communication

Page 92 of 344 HI 801 101 E Rev. 3.00

6 PROFIBUS DP
PROFIBUS DP is an international, open fieldbus standard that is used when a fast reaction
time is required for small amounts of data.

The HIMA PROFIBUS DP master and the HIMA PROFIBUS DP slave meet the criteria
specified in the European norm EN 50170 [7] and the globally binding IEC standard 61158
for PROFIBUS DP.

The HIMA PROFIBUS DP master can exchange data with the PROFIBUS DP slaves
cyclically and acyclically.

Different function blocks are available in SILworX to acyclically exchange data. These
function blocks are used to tailor the HIMA PROFIBUS DP master and the PROFIBUS DP
slaves to best meet the project requirements.

A redundant PROFIBUS DP connection can only be implemented by configuring a second
PROFIBUS DP master/slave and adjusting it in the user program.

 PROFIBUS DP master (see Chapter 6.1)
 PROFIBUS DP slave (see Chapter 6.13)

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 93 of 344

6.1 HIMA PROFIBUS DP Master
This chapter describes the characteristics of the HIMA PROFIBUS DP master and the
menu functions and dialog boxes required to configure the HIMA PROFIBUS DP master in
SILworX.

Equipment and System Requirements:

Element Description
HIMA controller HIMax with COM module
COM module The serial fieldbus interface (FB1 or FB2) used on the COM

module must be equipped with an optional HIMA PROFIBUS
DP master submodule, see Chapter 3.7.

Activation Activation through the plug-in module, see Chapter 3.5.

Table 63: Equipment and System Requirements

PROFIBUS DP Master Properties:

Element Description
Type of HIMA PROFIBUS
DP master

DP-V1 Class 1 Master
with additional DP-V2 functions

Transfer rate 9.6 kbit/s ... 12 Mbit/s
Bus address 0 ...125
Max. number of
PROFIBUS DP master

Two PROFIBUS DP masters can be configured for each COM
module.

Max. number of
PROFIBUS DP slaves

Up to 122 slaves can be configured for each resource (in all
master protocol instances). However, a maximum of 31 slaves
can be connected to a bus segment without repeaters.

Maximum process data
length
To a slave

DP output=: max. 244 bytes
DP input=: max. 244 bytes

Table 64: PROFIBUS DP Master Properties

According to the standard, a total of three repeaters may be used such that a maximum of
122 stations are possible per serial interface on a master.

6.1.1 Creating a HIMA PROFIBUS DP Master
To create a new HIMA PROFIBUS DP Master

1. In the structure tree, open Configuration, Resource, Protocols.
2. On the context menu for protocols, click New, PROFIBUS DP Master to add a new

PROFIBUS DP master.
3. On the context menu for the PROFIBUS DP master, click Properties, General.
4. Select Module and Interfaces.

6 PROFIBUS DP Communication

Page 94 of 344 HI 801 101 E Rev. 3.00

6.2 PROFIBUS DP: Example
In this example, a HIMA PROFIBUS DP master exchanges variables with a HIMA
PROFIBUS DP slave.

The example shows how to create and configure the HIMA PROFIBUS DP master and the
HIMA PROFIBUS DP slave.

Figure 27: Communication Using PROFIBUS DP

Fieldbus Interface 1 on the COM modules of both HIMax controllers must be equipped with
the corresponding PROFIBUS DP submodule, see Chapter 3.7.

For this example, the following global variables must be created in SILworX:

Global Variable Type
PB_Slave_Master1 UINT
PB_Slave_Master2 DWORD
PB_Slave_Master3 DWORD
PB_Slave_Master4 BYTE
PB_Master_Slave1 DWORD
PB_Master_Slave2 BYTE

6.2.1 Configuring the PROFIBUS DP Slave
Configuration of the PROFIBUS DP slave.

To create a new HIMA PROFIBUS DP Slave
1. In the structure tree, open Configuration, Resource, Protocols.
2. On the context menu for protocols, click New, PROFIBUS DP Slave to add a new

PROFIBUS DP slave.
3. On the context menu for the PROFIBUS DP slave, click Edit.
4. In the Properties tab, select COM Module and Interfaces (e.g., FB1).

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 95 of 344

To assign variables in the HIMA PROFIBUS DP slave

1. On the context menu for the PROFIBUS DP slave, click Edit.
2. In the Edit dialog box, select the Process Variables tab.

i
The start address of the input and output variables in the HIMA PROFIBUS DP slave
always begin with 0. If the PROFIBUS DP master (from another manufacturer) expects a
higher start address, dummy variables must be added to the reference variables.

Outputs in the HIMA PROFIBUS DP slave

Name Type Offset Global Variable
PB_Slave_Master1 UINT 0 PB_Slave_Master1
PB_Slave_Master2 DWORD 2 PB_Slave_Master2
PB_Slave_Master3 DWORD 6 PB_Slave_Master3
PB_Slave_Master4 BYTE 10 PB_Slave_Master4

Table 65: Outputs in the HIMA PROFIBUS DP Slave

1. Drag the global variable to be sent from the Object Panel onto the Output Variables
area.

i
In this example, the output variables of the HIMA PROFIBUS DP slave are composed of
four variables with a total of 11 bytes. The start address of the output variable with the
lowest offset is 0.

2. Right-click anywhere in the Output Variables area to open the context menu.
3. Click New Offsets to re-generate the variable offsets.

Inputs in the HIMA PROFIBUS DP Slave

Name Type Offset Global Variable
PB_Master_Slave1 DWORD 14 PB_Master_Slave1
PB_Master_Slave2 BYTE 18 PB_Master_Slave2

Table 66: Inputs in the HIMA PROFIBUS DP Slave

1. Drag the global variables to be received from the Object Panel onto the Input Variables
area.

i
In this example, the input variables of the HIMA PROFIBUS DP slave are composed of two
variables with a total of 3 bytes. The start address of the input variable with the lowest
offset is 0.

2. Right-click anywhere in the the Input Variables area to open the context menu.
3. Click New Offsets to re-generate the variable offsets.

To verify the configuration of the PROFIBUS DP slave

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Slave.

6 PROFIBUS DP Communication

Page 96 of 344 HI 801 101 E Rev. 3.00

2. Click the Verification button on Action Bar, and then click OK to confirm the action.
3. Thoroughly verify the messages contained in the Status Viewer and correct potential

errors.

i
Use the user program of the PROFIBUS DP slave to recompile the configuration of the
PROFIBUS DP slave resource and transfer it to the controllers. Only after this step, the
new configuration can be used for communication with the PROFIBUS DP.

6.2.2 Configuring the PROFIBUS DP Master

To create a new HIMA PROFIBUS DP Master

1. In the structure tree, open Configuration, Resource, Protocols.
2. Select New, PROFIBUS DP Master on the context menu for protocols to add a new

PROFIBUS DP master.
3. Select Properties, General on the context menu for the PROFIBUS DP master.
4. In the General tab, select COM Module and Interfaces (e.g., FB1).

i
Perform these steps to configure the HIMax PROFIBUS DP slave from within the
HIMax PROFIBUS DP master.

To create a new HIMax PROFIBUS DP Slave in the PROFIBUS DP Master

1. On the context menu for the PROFIBUS DP master, click New, PROFIBUS DP Slave.

To read the GSD file for the new PROFIBUS DP slave

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master, PROFIBUS Slave.

2. On the context menu for the PROFIBUS DP master, click Read GSD File and select the
GSD file for the PROFIBUS slave (e.g., hax100ea.gsd).

i
The GSD files for HIMax controllers are available on HIMA website at www.hima.com.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 97 of 344

Creating the HIMax PROFIBUS DP Modules

The number of bytes that must actually be transferred, must also be configured in the
PROFIBUS DP master. To do this, add Modules until the physical configuration of the
slave is achieved.

i
The number of modules used to achieve the necessary number of bytes is not important as
long as the maximum of 32 modules is not exceeded.
To avoid unnecessarily complicating the PROFIBUS DP master configuration, HIMA
recommends keeping the number of selected modules to a minimum.

To create the required PROFIBUS DP Modules
1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP

Master, PROFIBUS Slave.
2. On the menu bar, click PROFIBUS DP Master, Add modules.
3. For this example, select the following modules to receive 11 bytes from the PROFIBUS

DP slave and to send 3 bytes.

To number the PROFIBUS DP modules

1. Right-click the first PROFIBUS DP Module , and then click Properties.
2. Enter 0 into the Slot field.
3. Repeat these steps for every further PROFIBUS DP Module and number the modules

consecutively.

Figure 28: HIMax PROFIBUS DP Slave with Modules

i
Number the HIMax PROFIBUS DP modules without gaps and in ascending order, starting
with 0.
The order in which the PROFIBUS DP modules are arranged is not important for operation.
However, HIMA recommends organizing the DP input and output modules in an orderly
manner to ensure an overview can be maintained.

6 PROFIBUS DP Communication

Page 98 of 344 HI 801 101 E Rev. 3.00

Configuring the Input and Output Modules

i
The sum of the variables (in bytes), must identical with the size of the module (in bytes).

To configure the input module [000] DP Input/ELOP Export: 2 bytes

1. In the PROFIBUS DP slave, select the input module [000] DP Input/ELOP Export: 2
Bytes

2. Right-click the input module, then click Edit.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Input Signals area of the

input module [000] DP-Input/ELOP-Export: 2 Bytes.
Name Type Offset Global Variable
PB_Slave_Master1 UINT 0 PB_Slave_Master1

Table 67: Variables of the Input Module [000] DP Input/ELOP Export: 2 Bytes

5. Right-click anywhere in the Input Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

To configure the input module [001] DP Input/ELOP Export: 8 bytes

1. In the PROFIBUS DP slave, select the input module [001] DP Input/ELOP Export: 8
Bytes

2. Right-click the input module, then click Edit.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Input Signals area of the

input module [001] DP-Input/ELOP-Export: 8 Bytes.
Name Type Offset Global Variable
PB_Slave_Master2 DWORD 0 PB_Slave_Master2
PB_Slave_Master3 DWORD 4 PB_Slave_Master3

Table 68: Variables of the Input Module [001] DP Input/ELOP Export: 8 Bytes

5. Right-click anywhere in the Input Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

To configure the input module [002] DP Input/ELOP Export: 1 byte

1. In the PROFIBUS DP slave, select the input module [002] DP Input/ELOP Export: 1
Byte.

2. Right-click the input module, then click Edit.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Input Signals area of the

input module [002] DP-Input/ELOP-Export: 1 Byte.
Name Type Offset Global Variable
PB_Slave_Master4 BYTE 0 PB_Slave_Master4

Table 69: Variables of the Input Module [002] DP Input/ELOP Export: 1 Byte

5. Right-click anywhere in the Input Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 99 of 344

To configure the output module [003] DP Output/ELOP Import: 2 Bytes
1. In the PROFIBUS DP slave, select the output module [003] DP Output/ELOP Import: 2

Bytes
2. Right-click the output module, then click Edit.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Output Signals area of the

output module [003] DP-Output/ELOP-Import: 2 Bytes .
Name Type Offset Global Variable
PB_Master_Slave1 UINT 0 PB_Master_Slave1

Table 70: Variables of the Output Module [003] DP Output/ELOP Import: 2 Bytes

5. Right-click anywhere in the Output Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

To configure the output module [004] DP Output/ELOP Import: 1 Byte
1. In the PROFIBUS DP slave, select the output module [004] DP Output/ELOP Import: 1

Byte
2. Right-click the output module, then click Edit.
3. In the Edit dialog box, select the Process Variables tab.
4. Drag the suitable variable from the Object Panel onto the Output Signals area of the

output module [004] DP-Output/ELOP-Import: 1 Byte.
Name Type Offset Global Variable
PB_Master_Slave2 BYTE 0 PB_Master_Slave2

Table 71: Variables of the Output Module [004] DP Output/ELOP Import: 1 Byte

5. Right-click anywhere in the Output Signals area to open the context menu.
6. Click New Offsets to re-generate the variable offsets.

Creating the User Data in the PROFIBUS DP Master

To create the user data in the PROFIBUS DP master

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master.

2. Right-click PROFIBUS Master , and then click Properties.
3. Select the Data tab and click the Buttons ... next to the user data.
In the 32 bytes long user data field the group's start address and the block's number of
variables are defined (see also chapter 6.8).

4. For this example, create the following user data:
4, to ensure that four variables are received by the PROFIBUS DP master.
 2, to ensure that two variables that are sent by the PROFIBUS DP master.
The start address of the input and output groups begins with 0.

6 PROFIBUS DP Communication

Page 100 of 344 HI 801 101 E Rev. 3.00

Figure 29: User Data Field

To verify the configuration of the PROFIBUS DP slave

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master.

2. Click the Verification button on Action Bar, and then click OK to confirm the action.
3. Thoroughly verify the messages contained in the Status Viewer and correct potential

errors.

Figure 30: Verification Dialog Box

i
Use the user program of the PROFIBUS DP master to recompile the configuration of the
PROFIBUS DP master resource and transfer it to the controllers. Only after this step, the
new configuration can be used for communication with the PROFIBUS DP

Optimizing the PROFIBUS DP parameters

Using the default values for the PROFIBUS parameters, smooth PROFIBUS
communication is generally not a problem. However, the settings should be further
optimized to achieve faster data exchange rates and improve fault detection.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 101 of 344

To determine the actual target rotation time TTR [ms]

1. Open the Control Panel associated with the HIMax PROFIBUS DP master controller.
2. In the structure tree for the Control Panel, click PROFIBUS DP Master and read the

actual Target Rotation Time TTR [ms]. Note down this value.

To determine the parameters required for the PROFIBUS DP slave

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master, PROFIBUS DP Slave..

2. Right-click HIMax PROFIBUS Slave , and then click Properties.
3. Select the Features tab and read Min. Slave Interval MSI [ms] for this PROFIBUS DP

slave. Note down this value.
4. Select the Transfer Rate tab and read Max. Tsdr for the transfer rate used. Note down

this value.

To enter the parameters previously determined

1. Right-click PROFIBUS Master , and then click Properties.
2. Select the Timings tab.

Figure 31: PROFIBUS DP Master Properties
3. Convert the Max. Tsdr that was previously noted down in bit Time
4. Convert the Target Rotation Time TTR [ms] that was previously noted down in bit

Time, add 1/3 safety margin and enter the resulting value in the Target Rotation Time
TTR [ms] field.

5. Enter the Min. Slave Interval MSI [ms] that was previously noted down.

i
If various slaves are configured, the highest values of the parameters MaxTsdr [bit time]
and Min. Slave Interval [ms] must be used.

6. The data control time [ms] must be set to ≥ 6*Ttr ms

To enter the watchdog time for the PROFIBUS DP slave

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master, PROFIBUS DP Slave..

2. Right-click HIMax PROFIBUS Slave , and then click Properties.

6 PROFIBUS DP Communication

Page 102 of 344 HI 801 101 E Rev. 3.00

Figure 32: PROFIBUS DP Slave Properties

3. Select the Parameter tab and mark the Watchdog Active checkbox.
4. Enter the watchdog time [ms] ≥ 6*Ttr [ms] in the Watchdog Time [ms] field.

i
Use the user program of the PROFIBUS DP master and slave resources to recompile the
configurations of the PROFIBUS DP master and slave and transfer them to the controllers.
Only after this step, the new configurations can be used for communication with the
PROFIBUS DP

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 103 of 344

6.3 Menu Functions of the PROFIBUS DP Master

6.3.1 Edit
The Edit function on the context menu for the PROFIBUS DP master opens the Edit dialog
box.

The System Variables tab contains the following system variables that are required to
evaluate the state of the PROFIBUS DP master from within the user program.

Element Description
Error count Number of errors since statistics reset.
Baud rate Baud rate (bit/s) used for the bus.
Bus error If a bus error occurs, an error code is set in the Bus Error system

variable. An error code retains its value until the bus error has
been eliminated.

Code Description
0 OK, no bus error
1 Address error:

The master address is already available on
the bus

2 Bus malfunction
Malfunction detected on the bus, (e.g., bus
not properly terminated, several stations are
sending data simultaneously).

3 Protocol errors
An incorrectly coded packet was received.

4 Hardware fault
The hardware reported a fault, e.g., too short
time periods.

5 Unknown error
The master changed the status for an
unknown reason.

6 Controller Reset
The controller chip is reset if a serious bus
error occurs.

To evaluate the Bus Error status variable from within the user
program, it must be connected to a variable.

Average cycle time Measured average bus cycle time in milliseconds.
Last cycle time Measured bus cycle time in milliseconds.
Master State Indicate the current protocol state.

0: OFFLINE
1: STOP
2: CLEAR
3: OPERATE
Connect the status variable Master Status to a variable to
evaluate it in the user program.

Maximum Cycle Time Measured maximum bus cycle time in milliseconds.
Min. Slave Interval Minimum slave interval measured for one of the slaves assigned

to this master.
Minimum Cycle Time Measured minimum bus cycle time in milliseconds.
Target Rotation Time Target token rotation time

Table 72: System Variables in the PROFIBUS DP Master

6 PROFIBUS DP Communication

Page 104 of 344 HI 801 101 E Rev. 3.00

6.3.2 Menu Function 'Properties'
The Properties function on the context menu for the PROFIBUS DP master opens the
Properties dialog box.

The dialog box contains the following tabs:

Tab General
Element Description
Type PROFIBUS DP master
Name Any unique name for a PROFIBUS DP Master
Module Selection of the COM module within which the protocol is processed.
Use Max
CPU Load

Activated:
Use CPU load limit from the field Max. CPU Load [%]
Deactivated:
Do not use the CPU Load limit for this protocol.

Max. CPU
Load [%]

Maximum CPU load of module that can be used for processing the
protocols.

Range of values: 1...100%
Default value: 30%

Address Master station address.
Only one master station address may be available on the bus.

Range of values: 0...125
Default value: 0

Interface COM interface that should be used for the master.
Range of values: FB1, FB2

Baud Rate Baud rate (bit/s) used for the bus.
Possible values:

Value Baud Rate FB1 FB2
9600 9.6 kbit/s X X
19200 19.2 kbit/s X X
45450 45.45 kbit/s X X
93750 93.75 kbit/s X X
187500 187.5 kbit/s X X
500000 500 kbit/s X X
1500000 1.5 Mbit/s X X
3000000 3 Mbit/s X -
6000000 6 Mbit/s X -
12000000 12 Mbit/s X -

Table 73: General Properties for PROFIBUS DP Master

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 105 of 344

Tab Timings
Element Description
MinTsdr
[bit time]

Min. Station Delay Time:
Minimum time period that a PROFIBUS DP slave must wait before it
may respond.
Range of values: 11 ... 1023
Default value: 11

MaxTsdr
[bit time]

Max. Station Delay Time:
Maximum time period that a PROFIBUS DP slave may need to
respond.
Max Tsdr ≥ Tsdr (of the connected slave with the highest Tsdr)
The MaxTsdr values of the slaves are read from the GSD files and
are displayed in the Baud rates tab located in the slave's
Properties dialog box
range of values: 37 ... 65525
Default value: 37

Tsl
[bit time]

Slot Time
Maximum time span that the master waits for a slave’s
acknowledgment.
Tsl > MaxTsdr + 2*Tset +Tqui + 13
Range of values: 37...16383
Default value: 37

Tqui
[bit time]

Quiet Time for Modulator
Time that a station may need to switch from sending to receiving.
Range of values: 0...493
Default value: 0

Tset
[bit time]

Setup Time
Time for reacting to an event.
Range of value: 1 ... 494
Default value: 1

Ttr
[bit time]

Time configured for a token cycle.
Maximum time available for a token rotation.
A lower estimate of the Ttr can be obtained with a specific
calculation, see Chapter 6.4.4.
Range of values: 256 ... 16777215
Default value: 999

Ttr [ms] Actual token rotation time in ms
Min. Slave Interval
[ms]

Minimum time between two cyclical requests of a slave. The master
observes the Min. Slave Interval and does not fall below it.
However, the PROFIBUS DP cycle can be extended if Isochronous
Mode is inactive and the portion of acyclic telegrams increases
within a cycle. The value for the Min. Slave Interval is read from the
GSD file and appears in the Features tab located in the Properties
dialog box. In Isochronous Mode, the value for Min. Slave Interval
defines the time period for an isochronous cycle.

Element Description
Min. Slave Interval
[ms]
(continuation)

Isochronous Mode is activated if the options Isochronous Sync
Mode or Isochronous Freeze Mode are activated.
See also Refresh Rate between CPU and COM (CPU/COM tab).
Range of values: 0...6553,5
Default value: 1,0

Data Control Time
[ms]

Time span within which the master must report its current state on
the bus Standard value
Standard value: Data Control Time = WDT of the slave
Range of values: 0...65535 [10 ms]
Default value: 2000

6 PROFIBUS DP Communication

Page 106 of 344 HI 801 101 E Rev. 3.00

Table 74: Timings Tab in the Properties Dialog Box for the PROFIBUS DP Master

Tab CPU/COM
The default values of the parameters provide the fastest possible data exchange of
PROFIBUS DP data between the COM module (COM) and the processor module (CPU)
within the HIMax controller. These parameters should only be changed if it is necessary to
reduce the COM or CPU load for an application, and the process allows this change.

i
Only experienced programmers should modify the parameters. Increasing the COM and
CPU refresh rate means that the effective refresh rate of the PROFIBUS DP data is also
increased. The system time requirements must be verified.

Take also the parameter Min. Slave Interval [ms] into account which defines the refresh
rate of the PROFIBUS DP data from/to the PROFIBUS DP slave. The refresh rate of the
PROFIBUS DP data can be increased according to the CPU/COM refresh rate.

Element Description
Refresh Rate [ms] Refresh rate in milliseconds at which the COM and CPU exchange

protocol data. If the Refresh Rate is zero or lower than the cycle time
for the controller, data is exchanged as fast as possible. Range of
values: 0...(231-1).
Default value: 0

Within one cycle Activated:
Transfer of all protocol data from the CPU to the COM within a CPU
cycle.

Deactivated:
Transfer of all protocol data from the CPU to the COM, distributed
over multiple CPU cycles, each with 1100 byte per data direction.
This can also allow lowering the cycle time of the controller.

Default value: Activated

Table 75: CPU/COM Tab in the Properties Dialog Box for the PROFIBUS DP Master

Tab Other
Element Description
Max. number
of Resends

Maximum number of resends attempted by a master if a slave does not
respond.
Range of values: 0...7
Default value: 1

Highest
Active
Address

Highest Station Address (HSA)
Highest station address to be expected for one master. Masters having a
station address beyond the HSA are not included into the token ring.
Range of values: 0...125
Default value: 125

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 107 of 344

Isochronous
Sync Mode

Isochronous Sync Mode allows both a clock-controlled synchronization of
the master and the slaves and a simultaneous activation of the physical
outputs of several slaves.
If Isochronous Sync Mode is active, the master sends the "Sync" control
command as a broadcast telegram to all slaves. As soon as the slaves
supporting Isochronous Sync Mode receive the "Sync" control command,
they synchronously switch the data from the user program to the physical
outputs.
The physical outputs’ values remain frozen up to the next Sync control
command.
The cycle time is determined by the "Min. Slave Interval".
Condition: Ttr < Min. Slave Interval

Default value: Deactivated

Isochronous
Freeze Mode

Isochronous Freeze Mode allows the user to simultaneously accept the
input data of several slaves.
If Isochronous Freeze Mode is active, the master sends the "Freeze"
control command as a broadcast telegram to all slaves. As soon as the
slaves supporting Isochronous Freeze Mode receive the "Freeze" control
command , the physical inputs’ variables are frozen to the current value.
The master can thus read the values. The input data is only updated when
the next "Freeze" control command is sent.
The cycle time is determined by the "Min. Slave Interval".
Condition: Ttr < Min. Slave Interval

Default value: Deactivated

Auto clear on
error

If "Auto clear on error" is set in a slave that fails, the master adopts the
CLEAR state.

Default value: Deactivated

Time Master The master is also time master and periodically sends the system time via
the bus.
Default value: Deactivated

Clock Sync
Interval
[ms]

Clock Synchronization Interval.
Time interval within which the time master sends the system time over the
bus.
Range of values: 0 ... 65535
Default value: 0

Table 76: Other Properties for the PROFIBUS DP Master

6 PROFIBUS DP Communication

Page 108 of 344 HI 801 101 E Rev. 3.00

6.4 PROFIBUS DP Bus Access Method
The bus access method provides a defined time window to every station within which the
station can perform its communication tasks.

6.4.1 Master/Slave Protocol
The bus assignment between a PROFIBUS DP master and a PROFIBUS DP slave is
ensured by the master/slave method.

An active PROFIBUS DP master communicates with passive PROFIBUS DP slaves.

The PROFIBUS DP master with the token is authorized to send and may communicate with
the PROFIBUS DP slaves assigned to it. The master assigns the bus to a slave for a
certain time and the slave must respond within this time period.

6.4.2 Token Protocol
The bus assignment between automation devices (class 1 masters) and/or programming
devices (class 2 masters) is ensured via token passing.

All PROFIBUS DP masters connected to a common bus form a token ring. As long as the
active PROFIBUS DP master has the token, it assumes the master function on the bus.

In a token ring, the PROFIBUS DP masters are organized in ascending order according to
their station addresses. The token is passed on in this order until it is received by the
PROFIBUS DP master with the highest station address

This master passes the token on to the master with the lowest station address to close the
token ring.

The token rotation time corresponds to one token cycle through all the PROFIBUS DP
masters. The target rotation time (Ttr) is the maximum time permitted for a token cycle.

6.4.3 Target Token Rotation Time (Ttr)
Default Values for different transfer rates

While configuring the PROFIBUS DP master, take into account that some parameters set in
the Timings tab depend on the baud rate set in the General tab. For the first (initial)
configuration, use the default values specified in the following table. The values are
optimized in a later step.

 9.6k 19.2k 45.45k 93.75k 187.5k 500k 1.5M 3M 6M 12M
MinTsdr 11 11 11 11 11 11 11 11 11 11
MaxTsdr 60 60 400 60 60 100 150 250 450 800
Tsl bit time 100 100 640 100 100 200 300 400 600 1000
Tqui bit time 0 0 0 0 0 0 0 3 6 9
Tset bit time 1 1 95 1 1 1 1 4 8 16

Table 77: HIMax Default Values for Token Rotation Time Used with Different Transfer
Rates

All time values specified are expressed in Tbit (1Tbit = 1/[bit/s]).

MinTsdr is at least 11 Tbits long as a character has 11 bits (1 start bit, 1 stop bit, 1 parity
bit, 8 data bits).

Transmission Time for a Character

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 109 of 344

Baud Rate Tbit bit = 1/baud rate Time
9600 bit/s 1 / 9600 = 104.166 µs 11*104.166 µs = of 114.583 ms
6 Mbit/s 1/ 6*1066 = 166.667 ns 11*166.667 ns = 1.833 µs
Table 78: Transmission Time for a Character Used with different Transfer Rates

6.4.4 Calculating the Target Token Rotation Time (Ttr)
Calculate the minimum target token rotation time Ttr as follows:

Ttrmin = n * (198 + T1 + T2) + b * 11 + 242 + T1 + T2 + Tsl

Element Description
n Number of active slaves
b Number of I/O data bytes of the active slaves (input plus output)
T0 35 + 2 * Tset + Tqui
T1 If T0 < MinTsdr: T1 = MinTsdr

If T0 > MinTsdr: T1 = T0
T2 If T0 < MaxTsdr: T2 = MaxTsdr

If T0 > MaxTsdr: T2 = T0
Tsl Slot Time: Maximum time period that the master waits for a slave to respond
198 Twice a telegram header with variable length (for request and response)
242 Global_Control, FDL_Status_Req and token passing

Table 79: Elements Required for Calculating the Target Token Rotation Time

i
The estimate of the token rotation time Ttr is only valid if the following conditions are met:
only one master is operating on the bus, no transmissions are repeated and no acyclic data
is transmitted.
Never set Ttr to a value less than that calculated with the above formula. Otherwise fault-
free operation can no longer be ensured. HIMA recommends using a value two or three
times greater than the result.

Example of Calculating the Token Rotation Time Ttr

The following configuration is available:

5 active slaves

(n = 5)

20 I/O data bytes per slave

(b = 100)

The following time constants for a transmission rate of 6 Mbit/s are taken from Table 79:

- MinTsdr = 11 Tbit
- MaxTsdr = 450 Tbit
- Tsl bit time = 600 Tbit
- Tqui bit time = 6 Tbit
- Tset bit time = 8 Tbit

T0 = 35 + 2 * Tset + Tqui

T0 = 35 + 2 * 8 + 6

6 PROFIBUS DP Communication

Page 110 of 344 HI 801 101 E Rev. 3.00

T0 = 57 Tbit

As T0>MinTsdr: T1 = T0 = 57 Tbit

As T0<MaxTsdr: T2 = MaxTsdr = 450 Tbit

Use the computed values in the formula for the minimum target token rotation time:

Ttrmin = n * (198 + T1 + T2) + b * 11 + 242 + T1 + T2 + Tsl

Ttrmin= 5 (198+57+450)+100*11+242+57+450+600

Ttrmin [Tbit] = 5974 Tbit

Result:

Ttrmin [µs] = 5974 Tbit * 166.67 ns = 995.68 µs

i
Ttr is verified when it is entered into the dialog box.
If the value set for Ttr is lower than the value calculated by SILworX, an error message
appears in the Status Viewer. A minimum value for Ttr is also suggested.
If Isochronous Sync Mode or Isochronous Freeze Mode is activated, the cycle time is
defined by the parameter MinSlaveInterval. Ttr must be lower than Minimum Slave Interval.
If this condition is not met in the isochronous mode, an error message appears.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 111 of 344

6.5 Isochronous PROFIBUS DP Cycle (DP V2 and Higher)
The PROFIBUS DP cycle consists of two telegram phases: a fixed and cyclical phase and
an event-driven and acyclic phase.

The acyclic phase can extend the corresponding PROFIBUS DP cycle. This effect is not
wanted in specific applications and areas, such as drive technology

To achieve a constant cycle time (tconst), Isochronous Mode is activated in the master such
that Min. Slave Interval [ms] defines the constant cycle time (tconst). Configured in this way,
the isochronous PROFIBUS DP cycle offers clock accuracy with a difference of < 10 ms.

Figure 33: Isochronous PROFIBUS DP Cycle

To determine the cyclical phase, the minimum target token rotation time must be
calculated.

Further, a sufficiently large time interval (typically two to three times the minimum target
token rotation time Ttr) must be reserved for the acyclic phase. If the reserved time is not
needed, a break is taken prior to starting the next cycle to ensure the cycle time remains
constant. See also Chapter 6.4.3, Target Token Rotation Time (Ttr).

i
The master is configured entering the DP cycle time determined by the user into Min. Slave
Interval [ms].
To operate in the Isochronous Mode, one of the two parameters Isochronous Sync Mode or
Isochronous Freeze Mode must be activated in the master.
On the bus, only one master may simultaneously operate in the Isochronous Mode.
Additional masters are not permitted.

6 PROFIBUS DP Communication

Page 112 of 344 HI 801 101 E Rev. 3.00

6.5.1 Isochronous Mode (DP V2 and higher)
This function allows a clock-controlled synchronization in the master and the slaves,
irrespective of congestion on the bus. The bus cycle is synchronized with a clock difference
of <10 ms. Highly precise positioning processes can be thus implemented.

i
To a certain degree, slaves (DP V0 slaves) that do not support Isochronous Mode can also
benefit from its advantages. To do so, the slaves must be assigned to Group 8 and the
parameters Sync and/or Freeze must be activated.
The Sync Mode and Freeze Mode are normally used simultaneously.

6.5.2 Isochronous Sync Mode (DP V2 and higher)
Isochronous Sync Mode allows both a clock-controlled synchronization of the master and
the slave and a simultaneous activation of the outputs of several slaves.

6.5.3 Isochronous Freeze Mode (DP V2 and higher)
Isochronous Freeze Mode allows the user to simultaneously accept the input data of
several slaves.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 113 of 344

6.6 Menu Functions of the PROFIBUS DP Slave (in the Master)

6.6.1 Creating a PROFIBUS DP Slave (in the Master)
To create a PROFIBUS DP Slave in the HIMA PROFIBUS DP Master

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master.

2. On the context menu for PROFIBUS DP master, click New, PROFIBUS Slave to add a
new PROFIBUS slave.

6.6.2 Edit
The Edit function from the context menu for the PROFIBUS DP master opens the System
Variables dialog box.

The System Variables tab contains the following system variables that are required to
evaluate the state of the PROFIBUS DP slave from within the user program.

Element Description
Activation Control A change from 0 to 1 deactivates the slave.

A change from 1 to 0 activates the slave previously deactivated.
Activated = 0
Deactivated = 1

PNO Ident Number 16 bit unique number assigned by the PNO Germany to a product
(field device) and identifying it.

Standard Diagnosis With Standard Diagnosis, the slave informs the master about its
current state. This variable always contains the last received
standard diagnosis. The parameters comply with the diagnostic
telegram in accordance with IEC 61158.

Connection Count It increases with each new connection. It counts from count reset.
Connection State Valu

e
Description

0 Deactivated:
The parameter sets are loaded for these
slaves, but the slaves are completely ignored.
The input data is reset to their initial values,
no activity related to these slaves is noted on
the bus.

1 Inactive (not connected):
If a slave can no longer be reached, the input
data is reset to their initial values.
The following options can be selected for
each slave:
 The master continues to send output data

or
 the master attempts to re-configure the

slave.
2 Active (connected):

The slaves are exchanging I/O data with the
CPU.

Slave Alarm Count Number of alarms provided so far. It counts from count reset.
Standard Diagnosis
Count

Number of diagnostic messages provided so far. It counts from
count reset.

Table 80: System Variables in the PROFIBUS DP Slave

6 PROFIBUS DP Communication

Page 114 of 344 HI 801 101 E Rev. 3.00

6.6.3 Properties
The Properties function on the context menu for the PROFIBUS DP slave opens the
Properties dialog box. The dialog box contains the following tabs:

Tab Parameter
Element Description
Name Name of the slave
Address Address of the slave

Range of values: 0...125
Default value: 0

Active Slave State
Only an active slave can communicate with a PROFIBUS DP master.
Default value: Activated

DP V0 Sync
active

Sync Mode allows the user to simultaneously activate the outputs of
various DP V0 slaves.
Important
This field must be deactivated in DP V2 slaves operating in Isochronous
Sync Mode.
Default value: Deactivated

DP V0 Freeze
active

Freeze Mode allows the user to simultaneously accept the input data of
several DP V0 slaves.
Important
This field must be deactivated in DP V2 slaves operating in Isochronous
Freeze Mode.
Default value: Deactivated

Watchdog
Active

If the Watchdog Active checkbox is ticked, the slave detects a master's
failure and enters the safe state.
Default value: Deactivated

Watchdog Time
[ms]

The Watchdog Active checkbox must be ticked.
If master and slave do not exchange any data within this time interval,
the slave disconnects itself and resets all DP output data to their initial
values.
0 = Deactivated
Standard value: Slave’s watchdog time > 6 * Ttr
Range of values: 0 ... 65535
Default value: 0

On failure send
last data

FALSE: If a fault occurs, the connection is terminated and re-
established.
TRUE: If a fault occurs, the data continues to be sent, even without the
slave’s acknowledgement.
Default value: Deactivated

Auto clear on
failure

If Auto clear on failure is set to TRUE in the master and in the current
slave, and if the current slave fails, the master switches the entire
PROFIBUS DP into the safe state.
Default value: Activated

Table 81: Parameters Tab in the PROFIBUS DP Slave

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 115 of 344

 Tab Groups
In this tab, the slaves can be organized into various groups. The Global Control commands,
Sync and Freeze, can systematically address one or several groups.

Element Description
Member of Group 1 Member of Group 1
Member of Group 2 Member of Group 2
Member of Group 3 Member of Group 3
Member of Group 4 Member of Group 4
Member of Group 5 Member of Group 5
Member of Group 6 Member of Group 6
Member of Group 7 Member of Group 7
Member of Group 8 Member of Group 8

Default value: Deactivated

Table 82: Groups Tab in the Properties Dialog Box for the PROFIBUS DP Slave

Tab DP V1
This tab contains the parameters set with DP V1 and higher. In DP V0 slaves, no
parameters can be selected in this tab. The Supp column shows which parameters are
supported by the slave.

Element Description
DP V1 If the DP V1 mode is not activated, no DP V1 features can be used. In this

case, the slave acts like a DP V0 slave. The configuration data may have
to be changed (refer to the slave manual).
Default value: Deactivated

Failsafe If this mode is activated, a master in the CLEAR state does not send zeros
as output data; rather, it sends an empty data packet (failsafe data packet)
to the slave.
The slave recognizes that it must place the safe output data on the outputs
(the value of the safe output data is not necessarily zero).
Default value: Deactivated

isochronous
Mode

This function allows a clock-controlled synchronization in the master and
the slaves, irrespective of congestion on the bus. The bus cycle is
synchronized with a clock difference of < 1 ms. Highly precise positioning
processes can be thus implemented.
Default value: Deactivated

Publisher
Active

This function is required for the slave intercommunication. This allows the
slaves to communicate with one another in a direct and time saving
manner via broadcast without detouring through the master.
Default value: Deactivated

Prm Block
Struct. Supp.

The slave supports structured configuration data (read only).
Default value: Deactivated

Check Cfg
Mode

Reduced configuration control: If Check Cfg Mode is activated, the slave
can operate with an incomplete configuration.
This field should be deactivated during start-up.
Default value: Deactivated

Table 83: DP V1 Tab in the Properties Dialog Box for the PROFIBUS DP Slave

6 PROFIBUS DP Communication

Page 116 of 344 HI 801 101 E Rev. 3.00

Tab Alarms
This page is used to activate alarms. This is only possible with DP V1 slaves if DP V1 is
activated and the slave supports alarms. The checkmarks in the Supp column designate
which alarms are supported by the slave. Mandatory alarms are noted in the Required
column.

Element Description
Update Alarm Alarm, if the module parameters changed.
Status Alarm Alarm, if the module state changed.
Vendor Alarm Vendor specific alarm.
Diagnostic
Alarm

Alarm, if specific events occur in a module, e.g., short
circuits, over temperature, etc.

Process Alarm Alarm, if important events occur in the process.
Pull & Plug
Alarm

Alarm, if a module is removed or inserted.

Default value:
Deactivated

Table 84: Alarms Tab in the Properties Dialog Box for the PROFIBUS DP Slave

Tab Data
This tab specifies details about the supported data lengths and about the user data
(extended configuration data).

Element Description
Max. Input Len Maximum length of the input data
Max. Output Len Maximum length of the output data
Max. Data Len Maximum total length of the input and output data
User Data Len Length of the user data.
User Data Configuration data. HIMA does not recommend editing at this

level. Use the User Parameters dialog box instead, see
Chapter 6.8.

Max. Diag. Data Len Maximum length of the diagnostic data sent by the slave.

Table 85: Data Tab in the Properties Dialog Box for the PROFIBUS DP Slave

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 117 of 344

Tab Model
This tab displays self-explanatory details.

Element Description
Model Manufacturer identification of the PROFIBUS DP slave
Manufacturer Manufacturer of the field device
Ident Number Slave identification provided by PNO Germany
Revision Issue status of the PROFIBUS DP slave
Hardware release Hardware issue status of the PROFIBUS DP slave
Software release Software issue status of the PROFIBUS DP slave
GSD file name File name of the GSD file
Info Text Additional details about the PROFIBUS DP slave

Table 86: Model Tab in the Properties Dialog Box for the PROFIBUS DP Slave

Tab Features
Element Description
Modular Station TRUE: Modular station

FALSE: Compact station
First slot number The modules (slots) must be numbered without gaps, starting

with this value.
Max Modules Maximum number of modules that can be installed in a modular

station.
Support for
'Set Slave Add'

The slave supports dynamic address allocation.

Min. Slave Interval [ms] The minimum time period that must elapse between two cyclic
calls of the slave.

Diag. Update Number of polling cycles until the slave’s diagnosis mirrors the
current state.

Support for
WDBase1ms

The slave supports 1 ms as time base for the watchdogs

Support for
DP V0 Sync

The slave supports DP V0 Sync

Support for
DP V0 Freeze

The slave supports DP V0 Freeze

DP V1 Data Types The slave supports the DP V1 data types.
Extra Alarm SAP The slave supports SAP 50 for acknowledging the alarm.
Alarm Seq. Mode Count Indicate the number of active alarms that the slave can

simultaneously process. Zero means one alarm of each model.

Table 87: Features Tab in the Properties Dialog Box for the PROFIBUS DP Slave

6 PROFIBUS DP Communication

Page 118 of 344 HI 801 101 E Rev. 3.00

Tab Baud Rates
This tab specifies the baud rates that the slave supports and the corresponding MaxTsdr.

MaxTsdr is the time within which the slave must acknowledge a request from the master.
The range of values depends on the slave and the transfer rate, and ranges between 15
and 800 Tbit.

Element Description
9.6k MaxTsdr = 60
19.2k MaxTsdr = 60
31.25k Not supported
45.45k MaxTsdr = 60
93.75k MaxTsdr = 60
187.5k MaxTsdr = 60
500k MaxTsdr = 70
1.5M MaxTsdr = 75
3M MaxTsdr = 90
6M MaxTsdr = 100
12M MaxTsdr = 120

Table 88: Baud Rates Tab in the Properties Dialog Box for the PROFIBUS DP Slave

Tab Acyclic
This tab contains some parameters for the acyclic data transfer.

Element Description
Support for C1 Read/Write The slave supports the acyclic data transfer.
C1 Read/Write required The slave requires the acyclic data transfer.
C1 Max Data Len[Byte] Maximum length of an acyclic data packet.
C1 Response Timeout [ms] Time out for the acyclic data transfer.

Table 89: Acyclic Tab in the Properties Dialog Box for the PROFIBUS DP Slave

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 119 of 344

6.7 Importing the GSD File
The GSD file contains data for configuring the PROFIBUS DP slave.

To read the GSD file for the new PROFIBUS DP slave

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master, PROFIBUS Slave.

2. On the context menu for the PROFIBUS DP master, click Read GSD File and select the
GSD file for the PROFIBUS slave (e.g., hax100ea.gsd).

i
The GSD files for HIMax controllers are available on HIMA website at www.hima.com.
The manufacturer of the field device is responsible for the correctness of the GSD file.

The GSD file hax100ea.gsd of the HIMax PROFIBUS DP slave provides the following
modules:

PROFIBUS DP Master Input Modules Type Number
DP Input/ELOP Export Byte 1
DP Input/ELOP Export Bytes 2
DP Input/ELOP Export Bytes 4
DP Input/ELOP Export Bytes 8
DP Input/ELOP Export Bytes 16
DP Input/ELOP Export Word 1
DP Input/ELOP Export Words 2
DP Input/ELOP Export Words 4
DP Input/ELOP Export Words 8
DP Input/ELOP Export Words 16
PROFIBUS DP Master Output Modules Type Number
DP Output/ELOP Import Byte 1
DP Output/ELOP Import Bytes 2
DP Output/ELOP Import Bytes 4
DP Output/ELOP Import Bytes 8
DP Output/ELOP Import Bytes 16
DP Output/ELOP Import Word 1
DP Output/ELOP Import Words 2
DP Output/ELOP Import Words 4
DP Output/ELOP Import Words 8
DP Output/ELOP Import Words 16

Table 90: GSD File of the HIMax PROFIBUS DP Slave

6 PROFIBUS DP Communication

Page 120 of 344 HI 801 101 E Rev. 3.00

6.8 Configuring User Parameters
The group’s start address and the number of variables are defined in the user data field.

The number of bytes that must actually be transferred, must also be configured in the
PROFIBUS DP master. This is done by choosing the PROFIBUS DP modules defined in
the GDS file of the PROFIBUS DP slave (see also Chapter 6.2.2).

To open the Edit User Parameters dialog box

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master.

2. Right-click PROFIBUS Slave, and then click Properties.
3. Select the Data tab and click the Buttons ... next to the user data.

i
The structure of the Edit User Parameters dialog box depends on the GSD file of the
slave.

Structure of the 32-byte user data field:

The 32-byte user data field is structured as follows:

The 32 bytes are allocated in eight groups, with four bytes per group.

Groups 1...4 define which and how many variables the PROFIBUS DP master receives
from the PROFIBUS DP slave.

Groups 5...8 define which and how many variables the PROFIBUS DP master sends to the
PROFIBUS DP slave.

The first two bytes of each group specify the start address for the first variables to be read
or to be written.

The last two bytes in each group specify the number of variables that should be received or
sent.

Configuring the user data in different groups:

Usually, it is not necessary to allocate variables (user data) into various groups. It is enough
to define only the first signal group of the input and output variables, and to read or write
the data 'en bloc'.

In applications requiring that only selected variables are read and written, up to four
variable groups for both the input and the input variables can be defined.

Example

The PROFIBUS DP master sends and receives the following variables from the PROFIBUS
DP slave:

1st group: 4 input variables from start address 0 and up.

2nd group: 6 input variables from start address 50 and up.

4th group: 9 input variables from start address 100 and up.

5th group: 2 output variables from start address 10 and up.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 121 of 344

User data configuration in the PROFIBUS DP master:

Master Import/Slave Export Start address Number of Variables
1st group (byte 0...3) 0.0 0.4
2nd group (byte 4...7) 0.50 0.6
3rd group (byte 8...11) 0.0 0.0
4th group (byte 12...15) 0.10 0.9

Table 91: Example: Group 1...4 of the User Data Field

Master Export/Slave Import Start Address Number of Variable
5th group (byte 16 ... 19) 0.10 0.2
6th group (byte 20...23) 0.0 0.0
7th group (byte 24...27) 0.0 0.0
8th group (byte 28...31) 0.0 0.0

Table 92: Example: Group 1...4 of the User Data Field

Edit User Parameters dialog box of one HIMatrix or HIMax PROFIBUS DP slave.

Figure 34: Edit User Parameters Dialog Box

6 PROFIBUS DP Communication

Page 122 of 344 HI 801 101 E Rev. 3.00

6.9 PROFIBUS Function Blocks
The PROFIBUS function blocks are used to tailor the HIMA PROFIBUS DP master and the
corresponding PROFIBUS DP slaves to best meet the project requirements.

The function blocks are configured in the user program such that the master and slave
functions (alarms, diagnostic data, and states) can be set and read in the user program.

i
Function blocks are required for special applications. They are not needed for the normal
cyclic data traffic between master and slave!
For more information on the conceptual configuration of the PROFIBUS DP function blocks,
refer to Chapter 12.1.

The following function blocks are available:

Function block Function Description Suitable
beginning with
Stage of
Extension

MSTAT 6.9.1 Controlling the master state using the user
program

DP V0

RALRM 6.9.2 Reading the alarm messages of the slaves DP V1
RDIAG 6.9.3 Reading the diagnostic messages of the slaves DP V0
RDREC 6.9.4 Reading the acyclic data records of the slaves DP V1
SLACT 6.9.5 Controlling the slave states using the user

program
DP V0

WRREC 6.9.6 Writing the acyclic data records of the slaves DP V1
Table 93: Overview of the PROFIBUS DP Function Blocks

i
HIMA PROFIBUS DP masters operate with the stage of extension DP V1.
HIMA PROFIBUS DP slaves operate with stage of extension DP V0.
Note that for this reason, not all function blocks of the HIMA PROFIBUS DP master can be
used to control a HIMA PROFIBUS DP slaves.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 123 of 344

6.9.1 MSTAT Function Block

Figure 35: MSTAT Function Block

The user program uses the MSTAT function block (DP V0 and higher) to control the
PROFIBUS DP master. The master can thus be set to one of the following states using a
timer or a mechanical switch connected to a physical input.

- 0: OFFLINE
- 1: STOP
- 2: CLEAR
- 3: OPERATE

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs and Outputs of the Function Block with Prefix A:

These inputs and outputs can be used to control and evaluate the function blocks using the
user program. The prefix "A" means "Application".

A_Inputs Description Type
A_Req Rising edge starts the function block BOOL
A_ID Master ID (not used) DWORD
A_Mode The PROFIBUS DP master can be set to the following states:

0: OFFLINE
1: STOP
2: CLEAR
3: OPERATE

INT

Table 94: A-Inputs for the MSTAT Function Block

A_Outputs Description Type
DONE TRUE: The PROFIBUS DP master has been set to the state

defined on the A_Mode input.
BOOL

A_Busy TRUE: The PROFIBUS DP master is still being set. BOOL
A_Status Status or error code

(see Chapter 6.11)
DWORD

Table 95: A-Outputs for the MSTAT Function Block

Inputs and Outputs of the Function Block with Prefix F:

6 PROFIBUS DP Communication

Page 124 of 344 HI 801 101 E Rev. 3.00

These inputs and outputs of the function block establish the connection to the MSTAT
function block in structure tree. The prefix "F" means "Field".

i
Common variables are used to connect the MSTAT function block (in the Function Blocks
folder) to the MSTAT function block (in the user program). These must be created
beforehand using the Variable Editor.

Connect the F-Inputs of the MSTAT function block in the user program to the same
variables that will be connected to the outputs of the MSTAT function block in the structure
tree.

F-Inputs Type
F_ACK BOOL
F_DONE BOOL
F_BUSY BOOL
F_STATUS DWORD

Table 96: F-Inputs for the MSTAT Function Block

Connect the F-Outputs of the MSTAT function block in the user program to the same
variables that will be connected to the inputs of the MSTAT function block in the structure
tree.

F-Outputs Type
F_REQ BOOL
F_ID DWORD
F_MODE INT

Table 97: F-Outputs for the MSTAT Function Block

To create the MSTAT function block in the structure tree

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master, Function Blocks, New.

2. Select the MSTAT function block and click OK.
3. Right-click the MSTAT function block , and then click Edit.

 The window for assigning variables to the function blocks appears.

Connect the inputs of the MSTAT function block in the structure tree to the same variables
that have been previously connected to the F-Outputs of the MSTAT function block in the
user program.

Inputs Type
M_ID DWORD
MODE INT
REQ BOOL

Table 98: Input System Variables

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 125 of 344

Connect the following outputs of the MSTAT function block in the structure tree to the same
variables that have been previously connected to the F-Inputs of the MSTAT function block
in the user program.

Outputs Type
ACK BOOL
BUSY BOOL
DONE BOOL
STATUS DWORD

Table 99: Output System Variables

To use the MSTAT function block

1. In the user program, set the A_Mode input to the desired state.
If A_Mode is not set, an error code is output after step 2 on the A_Status output and the
PROFIBUS DP Master state is not set.

2. In the user program, set the A_Req input to TRUE.

i
The function block reacts to a rising edge on A_Req.

 The A_Busy output is TRUE until the MSTAT command has been processed.
Afterwards, A_Busy is set to FALSE and A_Done is set to TRUE.

i
If the preset mode could not be set successfully, an error code is output on A_Status.
The mode of the current master can be taken from the Master Status variable (see Chapter
6.10).

6 PROFIBUS DP Communication

Page 126 of 344 HI 801 101 E Rev. 3.00

6.9.2 RALRM Function Block

Figure 36: RALRM Function Block

The RALRM function block (DP V1 and higher) is used to evaluate the alarms.

Alarms are a special type of diagnostic messages that are handled with a high priority.
Alarms report important events to which the application must react (e.g., a WRREC). How
the application react, however, depends on the manufacturer. Refer to the manual of the
PROFIBUS DP slave for more information.

As long as the RALRM function block is active, it waits for alarm messages from the slaves.
If an alarm is received, the A_NEW output is set to TRUE for at least one cycle and the
alarm data can be read from an alarm telegram. Before the next alarm is received, A_NEW
is set to FALSE for at least one cycle. All alarms are acknowledged implicitly. No alarms
are lost.

If several RALRM function blocks are used, the user program must be configured such that
only one RALRM function block is active at any given time.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs and Outputs of the Function Block with Prefix A:

These inputs and outputs can be used to control and evaluate the function blocks using the
user program. The prefix "A" means "Application".

A_Inputs Description Type
A_Ena TRUE enables the function block. BOOL
A_Mode Not used INT
A_FID Not used DWORD
A_MLen Maximum expected length of the received alarm data

expressed in bytes
INT

Table 100: A-Inputs for the RDIAG Function Block

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 127 of 344

A_Outputs Description Type
A_Eno TRUE: The function block is active

FALSE: The function block is not active
BOOL

A_New TRUE: New alarm was received
FALSE: No new alarm

BOOL

A_Status Status or error code
(see Chapter 6.11)

DWORD

A_ID Identification number of the slave triggering the alarm DWORD
A_Len Length of the received alarm data in bytes INT

Table 101: A-Outputs for the RDIAG Function Block

Inputs and Outputs of the Function Block with Prefix F:

These inputs and outputs of the function block establish the connection to the RALRM
function block in structure tree. The prefix "F" means "Field".

i
Common variables are used to connect the RALRM function block (in the Function Blocks
folder) to the RALRM function block (in the user program). These must be created
beforehand using the Variable Editor.

Connect the F-Inputs of the RALRM function block in the user program to the same
variables that will be connected to the outputs of the RALRM function block in the structure
tree.

F-Inputs Type
F_ACK BOOL
F_ENO BOOL
F_NEW BOOL
F_STATUS DWORD
F_ID DWORD
F_LEN INT

Table 102: F-Inputs for the RALRM Function Block

Connect the F-Outputs of the RALRM function block in the user program to the same
variables that will be connected to the inputs of the RALRM function block in the structure
tree.

F-Outputs Type
F_Ena BOOL
F_MODE INT
F_FID DWORD
F_MLEN INT

Table 103: F-Outputs for the RALRM Function Block

To create the RALRM function block in the structure tree

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master, Function Blocks, New.

2. Select the RALRM function block and click OK.
3. Right-click the RALRM function block , and then click Edit..

 The window for assigning variables to the function blocks appears.

6 PROFIBUS DP Communication

Page 128 of 344 HI 801 101 E Rev. 3.00

Connect the inputs of the RALRM function block in the structure tree to the same variables
that have been previously connected to the F-Outputs of the RALRM function block in the
user program.

Inputs Type
EN BOOL
F_ID DWORD
MLEN INT
MODE INT

Table 104: Input System Variables

Connect the following outputs of the RALRM function block in the structure tree to the
same variables that have been previously connected to the F-Inputs of the RALRM function
block in the user program.

Outputs Type
ACK BOOL
ENO BOOL
ID DWORD
LEN INT
NEW BOOL
STATUS DWORD

Table 105: Output System Variables

The "Process Variables" tab located in the RALRM function block in the structure tree
contains variables that must be defined and whose structure must match the alarm data. If
no variables are defined, alarm data can be requested but not read.

An alarm message contains at least four bytes. The first four bytes of the alarm message
contain the standard alarm data.

To simplify the evaluation of standard alarms, HIMA provides the auxiliary function block
ALARM (see Chapter 6.10). To use it, combine the first four bytes into a variable of type
DWORD and set this variable on the IN input of the ALARM auxiliary function block.

i
If an alarm telegram contains more bytes than defined in the "Data" tab, only the preset
number of bytes is accepted. The rest is cut off.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 129 of 344

Alarm Data Description
Byte 0 Length of the alarm message expressed in bytes (4...126)
Byte 1 Identification for the alarm type

1: Diagnostic alarm
2: Process alarm
3: Pull alarm
4: Plug alarm
5: Status alarm
6: Update alarm
31:Failure of a master's or a slave's extension
32...126: Manufacturer specific
Consult the device manual provided by the manufacturer for
more information on the specific meaning.

Byte 2 Slot number of the component triggering the alarm
Byte 3 0:No further information

1: inbound alarm, slot malfunction
2: outbound alarm, slot no longer malfunctioning
3: outbound alarm, continued slot malfunction

Byte 4 to 126 Consult the device manual provided by the manufacturer for
more information on the specific meaning.

Table 106: Alarm Data

i
The structure of the standard alarms (bytes 0…3) is standardized and identical for all
manufacturers. Consult the manual of the PROFIBUS DP slave for more information on
bytes 4…126, since their use is manufacturer specific.
Note that devices built in accordance with the DP V0 standard do not support alarm
telegrams.

To use the RALRM function block

1. On the A_Mlen input of the user program, define the maximum amount of alarm data in
bytes that must be expected. A_Mlen cannot be changed during operation.

2. In the user program, set the A_Ena input to TRUE.

i
In contrast to other function blocks, the RALRM function block is only active as long as the
A_Ena input is set to TRUE.

If the function block was started successfully, the A_Eno output is set to TRUE. If the
function block could not be started, an error code is output on A_Status.

If a new alarm is received, the A_New output is set to TRUE for at least one cycle. During
this time period, the alarm data of the slave triggering the alarm are contained in the
outputs and can be evaluated.

Afterwards, the A_New output returns to FALSE for at least one cycle.
The A_Id and A_Len outputs are reset to zero before the next alarm message can be
received and evaluated.

6 PROFIBUS DP Communication

Page 130 of 344 HI 801 101 E Rev. 3.00

6.9.3 RDIAG Function Block

Figure 37: RDIAG Function Block

The RDIAG function block (DP V0 and higher) is used for reading the current diagnostic
message of a slave (6...240 bytes).

As many RDIAG function blocks as desired may be simultaneously active within the HIMA
PROFIBUS DP master.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs and Outputs of the Function Block with Prefix A:

These inputs and outputs can be used to control and evaluate the function blocks using the
user program. The prefix "A" means "Application".

A_Inputs Description Type
A_Req The rising edge starts the reading request of a

Diagnostic Message
BOOL

A_ID Slave’s identification number
(see Chapter 6.10)

DWORD

A_MLen Maximum length (in bytes) of the diagnostic message
expected to be read

INT

Table 107: A-Inputs for the RDIAG Function Block

A_Outputs Description Type
A_Valid A new diagnostic message has been received and is valid BOOL
A_Busy TRUE: Data is still being read BOOL
ERROR TRUE: An error occurred during the reading process BOOL
A_Status Status or error code

(see Chapter 6.11)
DWORD

A_Len Length of the read diagnostic data in bytes INT

Table 108: A-Outputs for the RDIAG Function Block

Inputs and Outputs of the Function Block with Prefix F:

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 131 of 344

These inputs and outputs of the function block establish the connection to the RDIAG
function block in structure tree. The prefix "F" means "Field".

i
Common variables are used to connect the RDIAG function block (in the Function Blocks
folder) to the RDIAG function block (in the user program). These must be created
beforehand using the Variable Editor.

Connect the F-Inputs of the RDIAG function block in the user program to the same
variables that will be connected to the outputs of the RDIAG function block in the structure
tree.

F-Inputs Type
F_ACK BOOL
F_VALID BOOL
F_BUSY BOOL
F_ERROR BOOL
F_Status DWORD
F_LEN INT

Table 109: F-Inputs for the RDIAG Function Block

Connect the F-Outputs of the RDIAG function block in the user program to the same
variables that will be connected to the inputs of the RDIAG function block in the structure
tree.

F-Outputs Type
F_Req BOOL
F_Id DWORD
F_Mlen INT

Table 110: F-Outputs for the RDIAG Function Block

To create the RDIAG function block in the structure tree

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master, Function Blocks, New.

2. Select the RDIAG function block and click OK..
3. Right-click the RDIAG function block , and then click Edit.

 The window for assigning variables to the function blocks appears.

Connect the inputs of the RDIAG function block in the structure tree to the same variables
that have been previously connected to the F-Outputs of the RDIAG function block in the
user program.

Inputs Type
ID DWORD
MLEN INT
REQ BOOL

Table 111: Input System Variables

6 PROFIBUS DP Communication

Page 132 of 344 HI 801 101 E Rev. 3.00

Connect the following outputs of the RDIAG function block in the structure tree to the same
variables that have been previously connected to the F-Inputs of the RDIAG function block
in the user program.

Outputs Type
ACK BOOL
BUSY BOOL
ERROR BOOL
LEN INT
Status DWORD
VALID BOOL

Table 112: Output System Variables

Diagnostic Data

The Data tab contains variables that must be defined and whose structure must match the
alarm data. A diagnostic message contains at least six bytes and a maximum of 240 bytes.
The first four bytes of the diagnostic message contain the standard diagnosis.

To simplify the evaluation of the standard alarms, HIMA provides the auxiliary function
block STDDIAG (see Chapter 6.10). To use it, combine the first four bytes into a variable of
type DWORD and set this variable on the IN input of the STDDIAG auxiliary function block.

i
If a diagnostic telegram contains more bytes than defined in the "Data" tab, only the preset
number of bytes is accepted. The rest is cut off.

Diagnostic Data Description
Byte 0
Byte 1
Byte 2

Byte 0...3 contains the standard diagnosis. Use the STDDIAG auxiliary
function block to decode the standard diagnosis as a variable of the type
DWORD.

Byte 3 Bus address of the master to which a slave is assigned.
Byte 4 High byte (manufacturer ID)
Byte 5 Low byte (manufacturer ID)
Byte 6...240 Consult the device manual provided by the manufacturer for more

information on the specific meaning.

Table 113: Diagnostic Data

i
The HIMA slaves send a diagnostic telegram of six bytes in length. The meaning of these
bytes is standardized.
The first six bytes of slaves from other manufacturers are only functionally identical.
For more information on the diagnostic telegram, refer to the description of the slave
provided by the manufacturer.

To use the RDIAG function block

1. In the user program, set the slave address on the A_ID input.
2. On the user program’s A_Mlen, define the maximum amount of alarm data in bytes that

must be expected.
3. In the user program, set the A_Req input to TRUE.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 133 of 344

i
The function block reacts to a rising edge on A_Req.

The A_Busy output is set to TRUE until the diagnostic request has been processed.
Afterwards, A_Busy is set to FALSE and A_Valid or A_Error to TRUE.

If the diagnostic telegram is valid, the A_Valid output is set to TRUE. The diagnostic data
can be evaluated using the variables defined in the "Data" tab. The A_Len output contains
the amount of diagnostic data in bytes that was actually read.

If the diagnostic telegram could not be read successfully, the A_Error output is set to TRUE
and an error code is output on A_Status.

6 PROFIBUS DP Communication

Page 134 of 344 HI 801 101 E Rev. 3.00

6.9.4 RDREC Function Block

Figure 38: RDREC Function Block

The RDREC function block is used for acyclically reading a data record from a slave
addressed on the A_Index input. Consult the slave’s manual to find out which data can be
read.

This functionality is optional and is only defined with DP V1 and higher!

Up to 32 RDREC and/or WRREC function blocks can simultaneously be active in the HIMA
PROFIBUS DP Master.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs and Outputs of the Function Block with Prefix A:

These inputs and outputs can be used to control and evaluate the function blocks using the
user program. The prefix "A" means "Application".

A_Inputs Description Type
A_Req The rising edge starts the reading request. BOOL
A_Id Slave identification number, (see Chapter 6.10) DWORD
A_Index Number of the data record to be read.

Consult the device manual provided by the manufacturer for
more information on the specific meaning.

INT

A_MLen Maximum length of the data to be read in bytes. INT

Table 114: A-Inputs for the RDREC Function Block

A_Outputs Description Type
A_Valid A new data record was received and is valid. BOOL
A_Busy TRUE: Data is still being read. BOOL
ERROR TRUE: An error occurred

FALSE: No error
BOOL

A_Status Status or error code6.11, see Chapter DWORD
A_Len Length of the read data record information in bytes. INT

Table 115: A-Outputs for the RDREC Function Block

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 135 of 344

Inputs and Outputs of the Function Block with Prefix F

These inputs and outputs of the function block establish the connection to the RDREC
function block in structure tree. The prefix "F" means "Field".

i
Common variables are used to connect the RDREC function block (in the Function Blocks
folder) to the RDREC function block (in the user program). These must be created
beforehand using the Variable Editor.

Connect the F-Inputs of the RDREC function block in the user program to the same
variables that will be connected to the outputs of the RDREC function block in the structure
tree.

F-Inputs Type
F_Ack BOOL
F_Valid BOOL
F_Busy BOOL
F_Error BOOL
F_Status DWORD
F_Len INT

Table 116: F-Inputs for the RDREC Function Block

Connect the F-Outputs of the RDREC function block in the user program to the same
variables that will be connected to the inputs of the RDREC function block in the structure
tree.

F-Outputs Type
F_Req BOOL
F_Id DWORD
F_Index INT
F_Mlen INT

Table 117: F-Outputs for the RDREC Function Block

To create the RDREC function block in the structure tree

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master, Function Blocks, New.

2. Select the RDREC function block and click OK..
3. Right-click the RDREC function block , and then click Edit.

 The window for assigning variables to the function blocks appears.
Connect the inputs of the RDREC function block in the structure tree to the same variables
that have been previously connected to the F-Outputs of the RDREC function block in the
user program.

Inputs Type
ID DWORD
INDEX INT
MLEN INT
REQ BOOL

Table 118: Input System Variables

6 PROFIBUS DP Communication

Page 136 of 344 HI 801 101 E Rev. 3.00

Connect the following outputs of the RDREC function block in the structure tree to the same
variables that have been previously connected to the F-Inputs of the RDREC function block
in the user program.

Outputs Type
ACK BOOL
BUSY BOOL
ERROR BOOL
LEN INT
STATUS DWORD
VALID BOOL

Table 119: Output System Variables

Data Description
No predefined
variables

A user-specific data structure can be defined in the Process Variables tab;
however, the structure must match the data record structure.
For more information on the record structure, refer to the operating
instructions provided by the manufacturer of the slave.

Table 120: Data

To use the RDREC function block

1. In the user program, set the slave address on the A_ID input.
2. In the user program, set the slave-specific index for the data record on the A_Index

input (see the manual provided by the manufacturer).
3. In the user program, set the length of the data record to be read on the A_Len input.
4. In the user program, set the A_Req input to TRUE.

i
The function block reacts to a rising edge on A_Req.

The A_Busy output is set to TRUE until the data record request has been processed.
Afterwards, A_Busy is set to FALSE and A_Valid or A_Error to TRUE.

If the data record is valid, the A_Valid output is set to TRUE. The data set can be evaluated
using the variables defined in the Data tab. The A_Len output contains the actual length of
the data record that has been read.

If the data record could not be read successfully, the A_Error output is set to TRUE and an
error code is output on A_Status.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 137 of 344

6.9.5 SLACT Function Block

Figure 39: SLACT Function Block

The function block SLACT (DP V0 and higher) is used for activating and deactivating a
slave from within the user program of the PROFIBUS DP master. The slave can thus be
set to one of the following states using a timer or a mechanical switch connected to a
physical input of the PROFIBUS DP master.

≠ 0: Active

= 0: Inactive

If various SLACT function blocks are used, the user program must be configured such that
only one SLACT function block is active at a time.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs and Outputs of the Function Block with Prefix A:

These inputs and outputs can be used to control and evaluate the function blocks using the
user program. The prefix "A" means "Application".

A_Inputs Description Type
A_Req Rising edge starts the function block BOOL
A_Id Slave’s identification number

(see Chapter 6.10)
DWORD

A_Mode Target state for the slave PROFIBUS DP slave

0: Active (Connected)

= 0: Not active (Deactivated)

INT

Table 121: A-Inputs for the SLACT Function Block

6 PROFIBUS DP Communication

Page 138 of 344 HI 801 101 E Rev. 3.00

A_Outputs Description Type
DONE TRUE: The PROFIBUS DP slave has been set to the state

defined on the "A_Mode" input.
BOOL

A_Busy TRUE: The PROFIBUS DP slave is still being set. BOOL
A_Status Status or error code

(see Chapter 6.11)
DWORD

Table 122: A-Outputs for the SLACT Function Block

Inputs and Outputs of the Function Block with Prefix F:

These inputs and outputs of the function block establish the connection to the SLACT
function block in structure tree. The prefix "F" means "Field".

i
Common variables are used to connect the SLACT function block (in the Function Blocks
folder) to the SLACT function block (in the user program). These must be created
beforehand using the Variable Editor.

Connect the F-Inputs of the SLACT function block in the user program to the same
variables that will be connected to the outputs of the SLACT function block in the structure
tree.

F-Inputs Type
F_Ack BOOL
F_Done BOOL
F_Busy BOOL
F_Status DWORD

Table 123: F-Inputs for the SLACT Function Block

Connect the F-Outputs of the SLACT function block in the user program to the same
variables that will be connected to the inputs of the SLACT function block in the structure
tree.

F-Outputs Type
F_Req BOOL
F_Id DWORD
F_Mode INT

Table 124: F-Outputs for the SLACT Function Block

To create the SLACT function block in the structure tree

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master, Function Blocks, New.

2. Select the SLACT function block and click OK.
3. Right-click the SLACT function block , and then click Edit.

 The window for assigning variables to the function blocks appears.

Connect the inputs of the SLACT function block in the structure tree to the same variables
that have been previously connected to the F-Outputs of the SLACT function block in the
user program.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 139 of 344

Inputs Type
ID DWORD
MODE INT
REQ BOOL

Table 125: Input System Variables

Connect the following outputs of the SLACT function block in the structure tree to the same
variables that have been previously connected to the F-Inputs of the SLACT function block
in the user program.

Outputs Type
ACK BOOL
BUSY BOOL
DONE BOOL
STATUS DWORD

Table 126: Output System Variables

To use the SLACT function block

1. In the user program, set the A_Mode input to the desired state.
2. In the user program, set the slave address identifier on the A_ID input.
3. In the user program, set the A_Req input to TRUE.

i
The function block reacts to a rising edge on A_Req.

A_Busy output is set to TRUE until the SLACT command has been processed. Afterwards,
A_Busy is set to FALSE and A_Done is set to TRUE.

If the slave mode could be set successfully, it is output on A_Status.

If the slave mode could not be set successfully, an error code is output on A_Status.

6 PROFIBUS DP Communication

Page 140 of 344 HI 801 101 E Rev. 3.00

6.9.6 WRREC Function Block

Figure 40: WRREC Function Block

The WRREC function block (DP V1 and higher) is used for acyclically writing a data record
to a slave addressed with A_Index. Consult the slave’s manual to find out which data can
be written.

Up to 32 RDREC and/or WRREC function blocks can simultaneously be active in the HIMA
PROFIBUS DP Master.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs and Outputs of the Function Block with Prefix A:

These inputs and outputs can be used to control and evaluate the function blocks using the
user program. The prefix "A" means "Application".

A_Inputs Description Type
A_Req The rising edge starts the request for writing a data record. BOOL
A_ID Identification number of the slave

(see Chapter 6.10)
DWORD

A_Index Number of the data record to be written.
Consult the device manual provided by the manufacturer for
more information on the specific meaning.

INT

A_Len Length of the data record to be written in bytes INT

Table 127: A-Inputs for the WRREC Function Block

A_Outputs Description Type
DONE TRUE: The function block completed the writing process. BOOL
A_Busy TRUE: The function block has not yet completed the writing

process
BOOL

ERROR TRUE: An error occurred BOOL
A_STATUS Status or error code

(see Chapter 6.11)
DWORD

Table 128: A-Outputs for the WRREC Function Block

Inputs and Outputs of the Function Block with Prefix F:

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 141 of 344

These inputs and outputs of the function block establish the connection to the WRREC
function block in structure tree. The prefix "F" means "Field".

i
Common variables are used to connect the WRREC function block (in the Function Blocks
folder) to the WRREC function block (in the user program). These must be created
beforehand using the Variable Editor.

Connect the F-Inputs of the WRREC function block in the user program to the same
variables that will be connected to the outputs of the WRREC function block in the structure
tree.

F-Inputs Type
F_Ack BOOL
F_Done BOOL
F_Busy BOOL
F_Error BOOL
F_Status DWORD

Table 129: F-Inputs for the WRREC Function Block

Connect the F-Outputs of the WRREC function block in the user program to the same
variables that will be connected to the inputs of the WRREC function block in the structure
tree.

F-Outputs Type
F_Req BOOL
F_Id DWORD
F_Index INT
F_Len INT

Table 130: F-Outputs for the WRREC Function Block

To create the WRREC function block in the structure tree

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP
Master, Function Blocks, New.

2. Select the WRREC function block and click OK.
3. Right-click the WRREC function block , and then click Edit.

 The window for assigning variables to the function blocks appears.

Connect the inputs of the WRREC function block in the structure tree to the same variables
that have been previously connected to the F-Outputs of the WRREC function block in the
user program.

Inputs Type
ID DWORD
INDEX INT
LEN INT
REQ BOOL

Table 131: Input System Variables

Connect the following outputs of the WRREC function block in the structure tree to the
same variables that have been previously connected to the F-Inputs of the WRREC
function block in the user program.

6 PROFIBUS DP Communication

Page 142 of 344 HI 801 101 E Rev. 3.00

Outputs Type
ACK BOOL
BUSY BOOL
DONE BOOL
ERROR BOOL
STATUS DWORD

Table 132: Output System Variables

Data Description
No predefined
variables

A user-specific data structure can be defined in the Process Variables tab;
however, the structure must match the data record structure.
For more information on the record structure, refer to the operating
instructions provided by the manufacturer of the slave.

Table 133: Data

To operate the function block WRREC, the following steps are essential:

1. In the user program, set the slave address on the A_ID input.
2. In the user program, set the slave-specific index for the data record on the A_Index

input (see the manual provided by the manufacturer).
3. In the user program, set the length of the data record to be written on the A_Len input.
4. In the user program, set the data record as defined in the "Data" tab.
5. In the user program, set the A_Req input to TRUE.

i
The function block reacts to a rising edge on A_Req.

The A_Busy output is TRUE until to the data record is written. Afterwards, A_Busy is set to
FALSE and A_Done is set to TRUE.

If the data record could not be written successfully, the A_Error output is set to TRUE and
an error code is output on A_Status.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 143 of 344

6.10 PROFIBUS Auxiliary Function Blocks
The auxiliary function blocks are used to configure and evaluate the inputs and outputs of
the function blocks.

The following auxiliary function blocks are available:

Auxiliary Function Blocks Function Description
ACTIVE (see Chapter 6.10.1) Determine if the slave is active or inactive
ALARM (see Chapter 6.10.2) Decode the alarm data
DEID (see Chapter 6.10.3) Decode the identification number
ID (see Chapter 6.10.4) Generate a four byte identifier
NSLOT (see Chapter 6.10.5) Create a continuous identification number for the slots
SLOT (see Chapter 6.10.6) Create a SLOT identification number using a slot number
STDDIAG (see Chapter
6.10.7)

Decode the standard diagnosis of a slave

LATCH Only used within other function blocks
PIG Only used within other function blocks
PIGII Only used within other function blocks

Table 134: Overview of the Auxiliary Function Blocks

6.10.1 ACTIVE Auxiliary Function Block

Figure 41: ACTIVE Auxiliary Function Block

The ACTIVE auxiliary function block uses the standard diagnosis of a PROFIBUS DP slave
to determine if the slave is active or inactive.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs Description Type
IN Slave standard diagnosis DWORD

Table 135: Inputs for the ACTIVE Auxiliary Function Block

Outputs Description Type
OUT TRUE: The slave is active

FALSE: The slave is inactive
BOOL

Table 136: Outputs for the ACTIVE Auxiliary Function Block

6 PROFIBUS DP Communication

Page 144 of 344 HI 801 101 E Rev. 3.00

6.10.2 Auxiliary Function Block ALARM
(Decode the Alarm Data)

Figure 42: ALARM Auxiliary Function Block

The ALARM auxiliary function block decodes the standard alarm data of a PROFIBUS DP
slave.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs Description Type
IN Standard alarm DWORD

Table 137: Inputs for the ALARM Auxiliary Function Block

Output Description Type
Len Total length of the alarm message. SINT
Type 1: Diagnostic alarm

2: Process alarm
3: Pull alarm
4: Plug alarm
5: Status alarm
6: Update alarm
The other numbers are either reserved or manufacturer
specific. Consult the device manual provided by the
manufacturer for more information on the specific meaning.

SINT

Diagnostic True = Diagnostics alarm BOOL
Process True = Process alarm BOOL
Pull True = The module was pulled BOOL
Plug True = The module was plugged BOOL
Status True = Status alarm BOOL
Update True = Update alarm BOOL
Slot Alarm Triggering Module BYTE
SeqNr Alarm Sequence Number SINT

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 145 of 344

Output Description Type
AddAck TRUE means that the slave that triggered this alarm requires

an additional acknowledgement from the application. For more
information on this, consult the slave manual provided by the
manufacturer.

BOOL

Appears
Disappears

Output Value Description
Appears TRUE
Disappears FALSE

If both are FALSE, no error has
occurred yet.

Appears TRUE
Disappears FALSE

An error occurred and is still
present.

Appears TRUE
Disappears FALSE

An error occurred and is
disappearing.

Appears TRUE
Disappears FALSE

If both are TRUE, the error
disappears but the slave remains
in a malfunction state.

BOOL

Table 138: Outputs for the ALARM Auxiliary Function Block

6.10.3 DEID Auxiliary Function Block
(Decode the identification number)

Figure 43: DEID Auxiliary Function Block

The DEID auxiliary function block decodes the identification number and disjoints it into its
four component parts.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs Description Type
ID Identification number of the slave DWORD

Table 139: Inputs for the DEID Auxiliary Function Block

Outputs Description Type
Master Master bus address BYTE
Segment Segment BYTE
Stop Slave bus address BYTE
Slot Slot or module number BYTE

Table 140: Outputs for the DEID Auxiliary Function Block

6 PROFIBUS DP Communication

Page 146 of 344 HI 801 101 E Rev. 3.00

6.10.4 ID Auxiliary Function Block
(Generate the identification number)

Figure 44: ID Auxiliary Function Block

The ID auxiliary function block uses four bytes to generate an identifier (identification
number) used by other auxiliary function blocks.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs Description Type
Ena Not used BOOL
Master Bus address BYTE
Segment Segment BYTE
Stop Slave bus address BYTE
Slot Slot or module number BYTE

Table 141: Inputs for the ID Auxiliary Function Block

Outputs Description Type
Enao Not used BOOL
ID Identification number of the slave DWORD

Table 142: Outputs for the ID Auxiliary Function Block

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 147 of 344

6.10.5 NSLOT Auxiliary Function Block

Figure 45: NSLOT Auxiliary Function Block

The NSLOT auxiliary function block uses an identifier to generate a new identifier that
addresses the next slot within the same slave. Ena must be set to TRUE to allow the
auxiliary function block to run.

Enao is set to TRUE if the result on the Ido output is valid.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs Description Type
Ena The auxiliary function block runs as long as Ena is set to

TRUE.
BOOL

ID Identification number of the slave DWORD
Table 143: Inputs for the NSLOT Auxiliary Function Block

Outputs Description Type
Enao TRUE = The result is valid

FALSE = No further slot number
BOOL

Ido Identification number of the slave DWORD

Table 144: Outputs for the NSLOT Auxiliary Function Block

6.10.6 SLOT Auxiliary Function Block

Figure 46: SLOT Auxiliary Function Block

The SLOT auxiliary function block uses an identifier and a slot number to generate a new
identifier that addresses the same slave as the first identifier but with the new slot number.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

6 PROFIBUS DP Communication

Page 148 of 344 HI 801 101 E Rev. 3.00

Inputs Description Type
Ena Not used BOOL
ID Logical address of the slave component (slave ID and slot

number)
DWORD

Slot New slot or module number BYTE

Table 145: Inputs for the SLOT Auxiliary Function Block

Outputs Description Type
Enao Not used BOOL
Ido Identification number of the slave DWORD

Table 146: Outputs for the SLOT Auxiliary Function Block

6.10.7 STDDIAG Auxiliary Function Block

Figure 47: STDDIAG Auxiliary Function Block

The STDDIAG auxiliary function block decodes the standard diagnosis of a PROFIBUS DP
Slave.

The outputs of type BOOL in the STDDIAG auxiliary function block are set to TRUE if the
corresponding bit has been set in the standard diagnosis.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 149 of 344

Inputs Description Type
IN Slave standard diagnosis DWORD

Table 147: Inputs for the STDDIAG Auxiliary Function Block

Outputs Description Type
StationNonExist The slave does not exist BOOL
StationNotReady Slave not ready BOOL
ConfigError Configuration error BOOL
ExtendedDiag Extended diagnosis follows BOOL
FuncNotSupported The function is not supported BOOL
InvalidAnswer Invalid reply from slave BOOL
ParamError Parameter error BOOL
StationLocked Slave locked by another master BOOL
NewParamRequired New configuration data required BOOL
StaticDiag Static diagnosis BOOL
WatchdogOn Watchdog active BOOL
FreezeReceived Freeze command received BOOL
SyncReceived Sync command received BOOL
StationDeactivated The slave was deactivated BOOL
DiagOverflow Diagnostics overflow BOOL
MasterAddr Master bus address BYTE

Table 148: Outputs for the STDDIAG Auxiliary Function Block

To read the standard diagnosis of the PROFIBUS DP slave:
1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP

Master.
2. Right-click PROFIBUS Slave , and then click Edit.
3. Drag the global variable of type DWORD onto the Standard Diagnosis field.
4. Connect this global variable with the input of the STDDIAG function block.

6 PROFIBUS DP Communication

Page 150 of 344 HI 801 101 E Rev. 3.00

6.11 Error Codes of the Function Blocks
If a function block is unable to correctly execute a command, an error code is output on
A_Status. The meaning of the error codes is described in the following table.

Error Code Symbol Description
16#40800800 TEMP_NOT_AVAIL Service temporary not available
16#40801000 INVALID_PARA Invalid parameter
16#40801100 WRONG_STATE The slave does not support DP V1
16#40808000 FATAL_ERR Fatal program error
16#40808100 BAD_CONFIG Configuration error in the data area
16#40808200 PLC_STOPPED The controller was stopped
16#4080A000 READ_ERR Error while reading a record
16#4080A100 WRITE_ERR Error while writing a record
16#4080A200 MODULE_FAILURE The error cannot be specified in greater

detail
16#4080B000 INVALID_INDEX Index is invalid
16#4080B100 WRITE_LENGTH Wrong length while writing
16#4080B200 INVALID_SLOT Slot number invalid
16#4080B300 TYPE_CONFLICT Wrong type
16#4080B400 INVALID_AREA Wrong read/write range
16#4080B500 STATE_CONFLICT Master in the wrong state
16#4080B600 ACCESS_DENIED Slave not active (or similar)
16#4080B700 INVALID_RANGE Wrong read/write range
16#4080B800 INVALID_PARAMETER Wrong parameter value
16#4080B900 INVALID_TYPE Wrong parameter type
16#4080C300 NO_RESOURCE Slave not available
16#4080BA00 BAD_VALUE Invalid value
16#4080BB00 BUS_ERROR Bus Error
16#4080BC00 INVALID_SLAVE Invalid slave ID
16#4080BD00 TIMEOUT Timeout occurred
16#4080C000 READ_CONSTRAIN Read constraint
16#4080C100 WRITE_CONSTRAIN Write constraint
16#4080C200 BUSY A function block of this type is already active
16#4080C300 NO_RESOURCE Slave inactive

Table 149: Error Codes of the Function Blocks

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 151 of 344

6.12 Control Panel (PROFIBUS DP Master)
The Control Panel can be used to verify and control the settings for the PROFIBUS DP
master. Details about the current status of the master or slave associated with it (e.g., cycle
time, bus state, etc.) are displayed.

To open Control Panel for monitoring the PROFIBUS DP master
1. In the structure tree, click Resource.
2. Click Online on the Action Bar.
3. In the System Log-in window, enter the access data to open the Control Panel for the

resource.
4. In the structure tree associated with the Control Panel, select PROFIBUS DP Master.

6.12.1 Context Menu (PROFIBUS DP Master)
The following commands can be chosen from the context menu for the selected
PROFIBUS DP master:

Offline:

Switch off the selected PROFIBUS DP master. If the master is switched off, it cannot
perform any actions.

Stop:

Stop the selected PROFIBUS DP master. The master participates in the token protocol but
does not send any data to the slaves.

Clear:

By clicking the CLEAR button, the selected PROFIBUS DP master adopts a safe state and
exchanges safe data with the slaves. The output data sent to the slaves only contains
zeros. Failsafe slaves receive failsafe telegrams containing no data. The PROFIBUS DP
master ignores the input data from the slaves, and uses the initial values in the user
program instead.

Operate:

Start the selected PROFIBUS DP master. The PROFIBUS DP master cyclically exchanges
I/O data with the slaves.

Reset Statistics:

The Reset Statistical Data button resets the statistical data (cycle [min], cycle [max] …) to
zero.

6 PROFIBUS DP Communication

Page 152 of 344 HI 801 101 E Rev. 3.00

6.12.2 View Box (PROFIBUS Master)
The view box displays the following values of the selected PROFIBUS DP master.

Element Description
Name Name of the PROFIBUS DP Master
Baud rate [bps] Baud rate of the master

The master can communicate using all baud rates specified in the
standard. Cycle times can be set up to a lower limit of 2 ms.

Fieldbus interface FB1, FB2
Fieldbus address Master bus address (0 ... 125)
Master State Indicate the current protocol state (see Chapter 6.12.3).

0 = OFFLINE
1 = STOP
2 = CLEAR
3 = OPERATE
100 = UNDEFINED

Bus state Bus error code 0...6:

0 = OK

1 = Address error:
The master address is already available on the bus

2 = Bus malfunction:
A malfunction was detected on the bus, e.g., bus was not properly
terminated, and several stations are sending data simultaneously.

3 = Protocol error:
An incorrectly coded packet was received.

4 = Hardware fault:
The hardware reported a fault, e.g., too short time periods.

5 = Unknown error:
The master changed the state for an unknown reason.

6 = Controller Reset:
With severe bus malfunctions, the controller chip could adopt an
undefined state and is reset.

The error code retains its value until the bus error has been
eliminated.

Bus Error Count Number of the bus error, so far.
CPU Load
(planned) [%]

Load of the COM module planned for this protocol.

CPU Load (actual) [%] Actual load of the COM module for this protocol.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 153 of 344

Element Description
MSI [ms] Min. Slave Interval in ms, resolution 0.1 ms
TTR [ms] Target Token Rotation Time in ms, resolution 0.1 ms
Last Cycle Time [ms] Last PROFIBUS DP cycle time [ms]
Minimum Cycle Time
[ms]

Minimum PROFIBUS DP cycle time [ms]

Average Cycle Time
[ms]

Average PROFIBUS DP cycle time [ms]

Maximum Cycle Time
[ms]

Maximum PROFIBUS DP cycle time [ms]

Table 150: View Box of the PROFIBUS Master

6.12.3 PROFIBUS DP Master State
The master status is displayed in the view box of the Control Panel and can be evaluated in
the user program using the Master Connection State status variable.

Master State Master State
OFFLINE The master is switched off; no bus activity.
STOP The master participates in the token protocol but does not send any data

to the slaves.
CLEAR The master is in the safe state and exchanges data with the slaves.

 The output data sent to the slaves only contains zeros.
 Failsafe slaves receive failsafe telegrams containing no data.
 The input data of the slaves are ignored and instead initial values are

used.
OPERATE The master is operating and cyclically exchanges I/O data with the

slaves.
UNDEFINED The firmware for the PROFIBUS DP master module is being updated.

Table 151: PROFIBUS DP Master State

6.12.4 Behavior of the PROFIBUS DP Master
Behavior of the PROFIBUS DP master according to the controller operating state.

State of the
Controller

Behavior of the HIMA PROFIBUS DP Master

STOP *) If the controller is in STOP, the master is in the OFFLINE state.
RUN If the controller is in RUN, the master tries to enter the OPERATE state.
STOP If the controller enters the STOP state, the master adopts the CLEAR

state.
If the master is already in the STOP or OFFLINE state, it remains in this
state.

*) After powering up the controller or loading the configuration

Table 152: Behavior of the PROFIBUS DP Master

6 PROFIBUS DP Communication

Page 154 of 344 HI 801 101 E Rev. 3.00

6.12.5 Function of the FBx LED in the PROFIBUS Master
The state of the serial PROFIBUS DP communication is displayed with the FBx LED on the
corresponding configured serial interfaces (fb1, fb2).

FBx LED Description
OFF No configuration or invalid configuration of the PROFIBUS DP master.
Blinking
Every 2 seconds

Valid configuration.
The PROFIBUS DP master is in the OFFLINE or STOP state.

ON The PROFIBUS DP master is in the OPERATE or CLEAR state and
exchanges data with all the activated slaves.

Blinking, every
second

At least one slave failed.

Table 153: FBx LED (PROFIBUS DP Slave)

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 155 of 344

6.13 HIMA PROFIBUS DP Slave
This chapter describes the characteristics of the HIMA PROFIBUS DP slave and the menu
functions and dialog boxes in SILworX required for configuring the HIMA PROFIBUS DP
slave.

Equipment and System Requirements

Element Description
HIMA controller HIMax with COM module

COM module The serial fieldbus interface (FB1 or FB2) used on the HIMax

COM module must be equipped with an optional HIMA
PROFIBUS DP slave submodule.
For more information on the interface assignment, see Chapter
3.7.

Activation Activation through the plug-in module, see Chapter 3.5.

Table 154: Equipment and System Requirements for the HIMA PROFIBUS DP Slave

PROFIBUS DP Slave Properties

Element Description
Type of HIMA
PROFIBUS DP slave

DP V0

Transfer rate 9.6 kbit/s ... 12 Mbit/s
Bus address 0 ...125
Max. number of slaves One HIMA PROFIBUS DP slave can be configured for each

COM module.
Process data volume of
a HIMA PROFIBUS DP
slave

DP-Output: max. 192 bytes
DP-Input: max. 240 bytes
Total: max. 256 bytes

Protocol watchdog If the COM is in RUN and the connection to the PROFIBUS DP
master is lost, the DP slave detects this once the watchdog
timeout has expired (the watchdog timeout must be set in the
master). In this case, the DP output data (or input data from the
perspective of the resource) are reset to their initial value and
the Data Valid flag (status variable of the DP slave protocol) is
set to FALSE.

Table 155: Properties of the HIMA PROFIBUS DP Slave

6.13.1 Creating a HIMA PROFIBUS DP Slave

To create a new HIMA PROFIBUS DP Slave
1. In the structure tree, open Configuration, Resource, Protocols.
2. On the context menu for protocols, click New, PROFIBUS DP Slave to add a new

PROFIBUS DP slave.
3. On the context menu for the PROFIBUS DP slave, click Edit.
4. In the Properties tab, click Module and Interface.

6 PROFIBUS DP Communication

Page 156 of 344 HI 801 101 E Rev. 3.00

6.14 Menu Functions of the PROFIBUS DP Slave

6.14.1 Edit
The Edit dialog box for the PROFIBUS DP master contains the following tabs:

Process Variables
The send and receive variables are created in the Process Variables tab.

Input Variables

The variables that the current controller should receive are entered in the Input Signals
area.

Any variables can be created in the Input Signals area. Offsets and types of the received
variables must be identical with offsets and types of the send variables of the
communication partner.

Output Variables

The variables for cyclic data exchange sent by this controller are entered in the Output
Signals area.

Any variables can be created in the Output Signals area. Offsets and types of the received
variables must be identical with offsets and types of the receive variables of the
communication partner.

System Variables
The variables that should be read in the controller are defined in the System Variables tab.

The System Variables tab contains the following system variables that are required to
evaluate the state of the PROFIBUS DP slave from within the user program.

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 157 of 344

Element Description
Current baud rate Baud rate currently used by the PROFIBUS DP slave protocol.
Data valid If the status variable Data Valid is set to TRUE, the slave

received valid import data from the master.
The status variable is set to FALSE if the watchdog time within
the slave has expired.

Default value: FALSE

Note:
If the master did not activate the slave’s watchdog and the
connection is lost, the Data Valid status variable retains the
value TRUE since the PROFIBUS DP slave has no means to
recognize that the connection was lost.

This fact must be taken into account when using this variable!
Error Code If an error occurred in the PROFIBUS DP slave protocol, the

error is transferred to this variable. The last occurred error is
displayed.
Possible (hexadecimal) value:

0x00: No error

0xE1: faulty configuration by the PROFIBUS Master

0xD2: faulty configuration by the PROFIBUS DP Master

Default value: 0x00
Master ID This is the ID of the PROFIBUS master that configured its own

PROFIBUS DP slave.
Possible (decimal) values:

0-125: Master ID

255: The slave is not assigned to any master

Default value: 0xFF
Protocol State Describe the state of the PROFIBUS DP slave protocol

Possible (hexadecimal) value:

0xE1: The controller is disconnected from the bus or not
active.

0xD2: The controller waits for a configuration from the master.

0xC3: The controller cyclically exchanges data with the
master.

Default value: 0xE1
Slave ID This variable contains the controller’s PROFIBUS DP slave ID

used on the bus. The user used the PADT to configure the
slave ID.
Possible (decimal) values:

0-125: PROFIBUS DP Slave ID of the own controller

Default value: 0xFF
Watchdog Time Watchdog time in milliseconds configured in the master. See

Chapter 6.6.3.

Table 156: System Variables in the PROFIBUS DP Slave

6.14.2 Properties
The Properties tab for the HIMA PROFIBUS DP slave contains the following parameters
for configuring the PROFIBUS DP slave.

6 PROFIBUS DP Communication

Page 158 of 344 HI 801 101 E Rev. 3.00

The value of the default parameters In one cycle and Refresh Rate [ms] provide a fast
means of exchanging PROFIBUS DP data between the COM module (COM) and the
PROFIBUS DP slave hardware of the HIMax controller.

These parameters should only be changed if it is necessary to reduce the COM load for an
application, and the process allows this change.

i
Only experienced programmers should modify the parameters.
Increasing the refresh rate for the COM and PROFIBUS DP hardware means that the
effective refresh rate of the PROFIBUS DP data is also increased. The system time
requirements must be verified.

Also take the parameter Min. Slave Interval [ms] into account (see Timings Tab, Chapter
6.3.2) which defines the minimum refresh rate of the PROFIBUS DP data between
PROFIBUS DP master and PROFIBUS DP slave.

Element Description
Type PROFIBUS DP slave
Name Name of the PROFIBUS DP Slave
Within one cycle Activated:

Transfer of all protocol data from the CPU to the COM within a CPU
cycle.

Deactivated:
Transfer of all protocol data from the CPU to the COM, distributed over
multiple CPU cycles, each with 1100 byte per data direction. This can
also allow lowering the cycle time of the controller.

Default value: Activated

Module Selection of the COM module within which the protocol is processed.
Use Max CPU
Load

Activated:
Use CPU load limit from the Max. CPU Load [%] field.

Deactivated:
Do not use the CPU Load limit for this protocol.

Max. CPU Load
[%]

Maximum CPU load of module that can be used for processing the
protocols.
Range of values: 1...100%
Default value: 30%

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 159 of 344

Station address Slave station address.

Only one slave station address may be available on the bus.
Range of values: 1 ... 125
Default value: 0

Refresh Rate
[ms]

Refresh rate in milliseconds at which the COM and the PROFIBUS DP
slave hardware exchange protocol data.
Range of values: 4...1000
Default value: 10

Interface Fieldbus interface that should be used for the PROFIBUS DP slave.
Range of values: fb1, fb2
Default value: None

Baud rate [bps] Baud rate used for the bus.
Possible values:

Value Baud Rate FB1 FB2
9600 9.6 kbit/s X X
19200 16.2 kbit/s X X
45450 45.45 kbit/s X X
93750 93.75 kbit/s X X
187500 187.5 kbit/s X X
500000 500 kbit/s X X
1500000 1.5 Mbit/s X X
3000000 3 Mbit/s X -
6000000 6 Mbit/s X -
12000000 12 Mbit/s X -

Table 157: Slave Properties: General Tab

6 PROFIBUS DP Communication

Page 160 of 344 HI 801 101 E Rev. 3.00

6.15 Control Panel (Profibus DP Slave)
The Control Panel can be used to verify and control the settings for the PROFIBUS DP
slave. Details about the slave's current status (e.g., cycle time, bus state, etc.) are
displayed.

To open Control Panel for monitoring the PROFIBUS DP Slave

1. In the structure tree, click Resource.
2. Click Online on the Action Bar.
3. In the System Log-in window, enter the access data to open the Control Panel for the

resource.
4. In the structure tree associated with the Control Panel, select PROFIBUS DP Slave.

6.15.1 Context Menu (PROFIBUS DP Slave)
The following commands can be chosen from the context menu for the selected
PROFIBUS DP slave:

Activate:

Activate the selected slave which can now exchange data with the PROFIBUS DP master.

Deactivate:

Deactivate the selected slave. The communication is terminated.

6.15.2 View Box (PROFIBUS DP Slave)
The view box displays the following values of the selected PROFIBUS DP master.

Element Description
Name Name of the PROFIBUS DP Slave
Fieldbus interface Assigned fieldbus interface of the slave
Protocol State Connection State

0 = Deactivated,
1 = Inactive (connection attempt)
2 = Connected

Error State See Chapter 6.14.1
Timeout Watchdog time in milliseconds configured in the master. See

Chapter 6.6.3
Watchdog Time
[ms]

It is set in the master. See Chapter 6.6.3.

Fieldbus address See Chapter 6.14.2.
Master Address Address of the PROFIBUS DP master.
Baud rate [bps] Current baud rate. See Chapter 6.14.2.
CPU Load
(planned) [%]

Load of the COM module planned for this protocol.

CPU Load (actual)
[%]

Actual load of the COM module for this protocol.

Table 158: View Box of the PROFIBUS DP Slave

Communication 6 PROFIBUS DP

HI 801 101 E Rev. 3.00 Page 161 of 344

6.16 Function of the FBx LED in the PROFIBUS Slave
The COM module indicates the state of the local PROFIBUS DP slave protocol using one
of the LEDs assigned to the fieldbus interface. The states of these LEDs are specified in
the following table.

FBx LED Color Description
OFF Yellow The PROFIBUS DP slave protocol is not active!

I.e., the controller is in the STOP state or no PROFIBUS DP
slave is configured.

Blinking
every 2 seconds

Yellow No data traffic!
The PROFIBUS DP slave is configured and ready.

ON Yellow The PROFIBUS DP slave protocol is active and is
exchanging data with the PROFIBUS DP master.

OFF Red PROFIBUS DP Slave protocols not disturbed.
Blinking Red The following events result in a malfunction.

The configurations of the PROFIBUS DP master and slave
are faulty or do not correspond to one another.
Calculating time budget exceeded

If no faults occur for a period longer than 5 seconds, the
state changes to "Protocol not disturbed".

Table 159: LED FBx (PROFIBUS DP Slave)

7 Modbus Communication

Page 162 of 344 HI 801 101 E Rev. 3.00

7 Modbus
The Modbus coupling of HIMax systems to almost any process control and visual display
system can be achieved either directly, using the RS485 interfaces, or indirectly, using the
Ethernet interfaces of the controllers. The HIMax system can be operated as a master or as
a slave.

The Modbus functionality makes it particularly easy to connect to Control Panels or other
controllers. Given its intensive use in projects worldwide, Modbus has been proven through
countless applications.

Modbus master (see Chapter 7.1)
Redundancy of the Modbus master must be configured in the user program such that the
user program monitors the redundant transmission paths and assigns the redundantly
transmitted process data to the corresponding transmission path.

Modbus slave (see Chapter 7.5.3)
The Modbus slave can be configured redundantly.

i
HIMax controllers and the communication partner must be located in the same subnet, if
the Ethernet interfaces are used as transmission channel, or they must have the
corresponding routing settings if a router is used.

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 163 of 344

7.1 HIMA Modbus Master
Both, the serial interface (RS485) and TCP/UDP (Ethernet) can be used to configure the
data transfer between the HIMA Modbus master and the Modbus slaves. Further, the HIMA
Modbus master can also be used as a gateway (Modbus: TCP/UDP -> RS485).

Equipment and System Requirements

Element Description
HIMA controller HIMax with COM module

Processor module The Ethernet interfaces on the processor module may not be used

for Modbus TCP.
COM module Ethernet 10/100BaseT

Pin assignment of the D-sub connectors FB1 and FB2
If Modbus RTU is used, the serial fieldbus interface (FB1 or FB2)
used on the COM module must be equipped with an optional
HIMA RS485 submodule.
For more information on the interface assignment, see Chapter
3.7.

Activation Each of the two Modbus master functions must be enabled
individually, see Chapter 3.5.
Modbus Master RTU (RS485), Modbus Master TCP

Table 160: Equipment and System Requirements for the Modbus Master

Modbus Master Properties

Property Description
Modbus master One Modbus master can be configured for each COM module.

One Modbus master can simultaneously:
operate TCP/UDP slaves and
serial slaves on several serial buses;
be used as gateway from Modbus TCP to Modbus RTU.

Max. number of Modbus
slaves

One Modbus master can operate up to 247 slaves.
121 Modbus slaves per serial interface
64 TCP slaves via TCP/IP connection
247 UDP slaves through the UDP/IP connection

Max. number of request
telegrams

Up to 988 request telegrams can be configured per Modbus
master.

Max. length of the request
telegram

With HIMA-specific request telegrams 1100 bytes, see Chapter
7.5.2.

Max. size of process data A total of 128 kB of data can be transmitted and a total of 128
kB of data can be received.

i
The status bytes of the master and the status bytes of
each slave assigned to it must be subtracted from the
max. size of process data (128 kB).

Display format of the
Modbus data

The HIMax controllers use the big endian format. Example: 32-
bit data (e.g., DWORD, DINT):

32-bit data (hex) 0x12345678
Memory offset 0 1 2 3
Big endian (HIMax) 12 34 56 78
Middle endian (H51q) 56 78 12 34
Little endian 78 56 34 12

Table 161: Modbus Master Properties
According to the standard, a total of three repeaters may be used such that a maximum of
121 slaves are possible per serial master interface.

7 Modbus Communication

Page 164 of 344 HI 801 101 E Rev. 3.00

7.2 Modbus Example
In this example, the HIMA Modbus master exchanges data with a HIMA Modbus slave
through Modbus TCP. Both controllers are connected via the Ethernet interface of the
communication modules.

i
If the Modbus slave and the Modbus master are located in different subnets, the routing
table must contain the corresponding user-defined routes.

Figure 48: Communication Using Modbus TCP/IP

For this example, the following global variables must be created in SILworX:

Global Variables Type
Master->Slave_BOOL_00 BOOL
Master->Slave_BOOL_01 BOOL
Master->Slave_BOOL_02 BOOL
Master->Slave_WORD_00 WORD
Master->Slave_WORD_01 WORD
Slave->Master_WORD_00 WORD
Slave->Master_WORD_01 WORD

7.2.1 Configuring the Modbus TCP Slave

To create a new HIMA Modbus Slave

1. In the structure tree, open Configuration, Resource, Protocols.
2. On the context menu for protocols, select New, Modbus Slave Set to add a new

Modbus slave set.
3. Select Edit on the context menu for the Modbus slave set, open the Modbus Slave Set

Properties, and retain the default values.
4. Select the Modbus slave tab and perform the following actions:

- Select COM Module
- Activate Enable TCP
- The remaining parameters retain the default values.

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 165 of 344

To configure the bit input variables of the Modbus slave

i
The Boolean variables that the master addresses bit by bit are entered in the Bit Variables
tab (function code 1, 2, 5, 15).

1. From the context menu for the Modbus slave, click Edit and then select the Bit

Variables tab.
2. Drag the following global variables from the Object Panel onto the Bit Inputs area.
Bit address Bit variable Type
0 Master->Slave_BOOL_00 BOOL
1 Master->Slave_BOOL_01 BOOL
2 Master->Slave_BOOL_02 BOOL

3. Right-click anywhere in the Register Inputs area, and then click New Offsets to

renumber the variable offsets.

To configure the register input variables of the Modbus slave

i
The variables that the master addresses 16 register by register are entered in the Register
Variables tab (function code 3, 4, 6, 16 ,23).

1. From the context menu for the Modbus slave, click Edit and then select the Register

Variables tab.
2. Drag the following variables from the Object Panel onto the Register Inputs area.
Register Address Register variables Type
0 Master->Slave_WORD_00 WORD
1 Master->Slave_WORD_01 WORD

3. Right-click anywhere in the Register Inputs area, and then click New Offsets to

renumber the variable offsets.

To configure the register output variables of the Modbus slave

1. From the context menu for the Modbus slave, click Edit and then select the Register
Variables tab.

2. Drag the following variables from the Object Panel onto the Register Outputs area.
Register Address Register variables Type
0 Slave->Master_WORD_00 WORD
1 Slave->Master_WORD_01 WORD

3. Right-click anywhere in the Register Outputs area, and then click New Offsets to

renumber the variable offsets.

To check the Modbus TCP slave configuration

1. Open the context menu for the Modbus TCP master and click Verification.
2. Thoroughly verify the messages contained in the Status Viewer and correct potential
errors.

7 Modbus Communication

Page 166 of 344 HI 801 101 E Rev. 3.00

7.2.2 Configuring the Modbus TCP Master

To create the HIMA Modbus Master

1. In the structure tree, open Configuration, Resource, Protocols.
2. On the context menu for protocols, click New, Modbus Master to add a new Modbus

master.
3. From the context menu for the Modbus master, Properties, General.
4. Click COM Module.

The remaining parameters retain the default values.

To create the connection to the Modbus TCP slave in the Modbus master

1. In the structure tree, open Resource, Protocols, Modbus Master, Ethernet Slaves.
2. Right-click Ethernet Slaves, then click New.
3. Select TCP/UDP Slaves from the list and click OK to confirm.
4. To configure the TCP/UDP slave in the Modbus master:

- Click Edit to assign the system variables, see Chapter 7.5.10.
- Click Properties to configure the properties, see Chapter 7.5.11.

Enter the IP address of the TCP/UDP slave in the slave's properties.
The remaining parameters retain the default values.

To configure the write request telegram for the bit output variable:

1. Right-click TCP/UDP slaves, then click New.
2. From the list, select Write Multiple Coils (15).
3. Right-click Write Multiple Coils (15), then click Properties.

- Enter 0 in the start address of the write area
4. Right-click Read Multiple Coils (15), then click Edit.
5. Drag the following variables from the Object Panel onto the Output Variables tab..
Offset Bit Variables Type
0 Master->Slave_BOOL_00 BOOL
1 Master->Slave_BOOL_01 BOOL
2 Master->Slave_BOOL_02 BOOL

6. Right-click anywhere in the Output Variables area to open the context menu and click
New Offsets to renumber the variable offsets.

To configure the write request telegram for the register output variable:

1. Right-click TCP/UDP slaves, then click New.
2. From the list, select Write Multiple Registers (16).
3. Right-click Write Multiple Register (16), then click Properties.

- Enter 0 in the start address of the write area
4. Right-click Write Multiple Registers (16), then click Edit.
5. Drag the following variables from the Object Panel onto the Output Variables tab..

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 167 of 344

Offset Register variables Type
0 Master->Slave_WORD_00 WORD
1 Master->Slave_WORD_01 WORD

6. Right-click anywhere in the Output Variables area to open the context menu and click
New Offsets to renumber the variable offsets.

To define the request telegram for reading the input variables in the Modbus master

1. Right-click TCP/UDP slaves, then click New.
2. From the list, select Read Holding Registers (03).
3. Right-click Read Holding Registers (03), then click Properties.

- Enter 0 in the start address of the read area.
4. Right-click Read Holding Registers (03), then click Edit.
5. Drag the following variables from the Object Panel onto the Input Variables tab..
Offset Register variables Type
0 Slave->Master_WORD_00 WORD
1 Slave->Master_WORD_01 WORD

6. Right-click anywhere in the Input Variables area to open the context menu and click

New Offsets to renumber the variable offsets.

To check the Modbus TCP master configuration
1. Open the context menu for the Modbus TCP master and click Verification.

To check the Modbus TCP master configuration

1. Open the context menu for the Modbus TCP master and click Verification.
2. Thoroughly verify the messages contained in the Status Viewer and correct potential

errors.

To create the code for the controllers
1. Start the code generator for the master and slave resource.
2. Make sure that the code was generated without error.
3. Load the codes into the master and slave controllers respectively.

7.3 Example of Alternative Register/Bit Addressing
In this example, the configuration defined in Chapter 7.2 is extended by 16 Boolean
variables in the Register Area. The 16 Boolean variables are read with the request telegram
Write Multiple Coils (15), see also Chapter 7.12.

To configure the input variables in the Modbus slave

1. From the context menu for the Modbus slave, click Edit and then select the Register
Variables tab.

2. Drag the 16 new Boolean variables from the Object Panel onto the Register Inputs
area.

7 Modbus Communication

Page 168 of 344 HI 801 101 E Rev. 3.00

Register Address Register variables Type
0 Master->Slave_WORD_00 WORD
1 Master->Slave_WORD_01 WORD
2 Master->Slave_BOOL_03 ..._18 BOOL Add one again

3. Right-click anywhere in the Register Inputs area, and then click New Offsets to

renumber the variable offsets.

To configure the alternative register/bit addressing in the Modbus slave

1. Right-click the Modbus Slave and select Edit, and Offsets, then activate Use
Alternative Register/Bit Addressing.

2. In this example, use the following offsets for the alternative areas:
Register Area Offset Bits Input 1000
Register Area Offset Bits Output 1000
Bit Area Offset Register Input 8000
Bit Area Offset Register Output 8000

i
To use the Modbus request telegram Write Multiple Coils (15) to access the Boolean
variables in the Register Variables area, the variables must be mirrored in the Bit
Variables area.

To configure the write request telegram for the output variable (BOOL) in the Modbus
master

1. Right-click TCP/UDP slaves, then click New.
2. From the list, select Write Multiple Coils (15).
3. Right-click Write Multiple Coils (15), then click Properties.

- Enter 8032 in the start address of the write area
4. Right-click Read Multiple Coils (15), then click Edit.
5. Drag the following variables from the Object Panel onto the Output Variables tab..
Offset Mirrored Register Variable Type
0 to 15 Master->Slave_BOOL_03..._18 BOOL

6. Right-click anywhere in the Output Variables area to open the context menu and click
New Offsets to renumber the variable offsets.

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 169 of 344

7.4 Menu Functions of the HIMA Modbus Master

7.4.1 Edit
The Edit dialog box for the Modbus master contains the following tab:

System Variables
The System Variables tab contains system variables that are required to control the
Modbus Master and evaluate its state from within the user program.

Element Description
Slave Connection
Error Count

Number of faulty connections with Modbus slaves that are in the
"Activated" state. Deactivated Modbus slaves are not taken into
account.

Modbus Master
Activation Control

Stop or start the Modbus master from within the user program.
0:START
1:STOP

Modbus Master Bus
Error

Bus error on RS485, e.g., telegram error (code unknown etc),
length error.

Modbus Master State It indicates the current protocol state:
1: OPERATE
0: OFFLINE

Reset All Slave Errors A change from FALSE to TRUE resets all slave and bus errors.

Table 162: System Variables for the Modbus Master

7 Modbus Communication

Page 170 of 344 HI 801 101 E Rev. 3.00

7.4.2 Properties
The Properties function on the context menu for the Modbus master opens the Properties
dialog box.

The dialog box contains the following tabs:

General
The Tab General contains the name and a description for the Modbus master. This tab is
also used to set the parameters for specifying whether the Modbus master should also
operate as a TCP and/or a UDP gateway.

Element Description
Type Modbus master
Name Name for the Modbus master
Description A description for the Modbus master.
Module Selection of the COM module within which the protocol is processed.
Use Max CPU Load Activated:

Use CPU load limit from the Max. CPU Load [%] field.

Deactivated:
Do not use the CPU Load limit for this protocol.

Max. CPU Load [%] Maximum CPU load of module that can be used for processing the
protocols.

Range of values: 1...100%
Default value: 30%

Enable TCP
Gateway

If the TCP Modbus gateway is enabled, at least one Modbus RS485
interface must be configured.

TCP Server Port Standard: 502
Additional TCP ports may also be configured. Observe the port
assignment provided by the ICANN (Internet Corporation for
Assigned Names and Numbers).

Maximum Number
of
TCP connections
operating as server.

Maximum number of TCP connections opened simultaneously and
operating as server.

Range of values:1 ... 64
Default value: 5

Enable UDP
gateway

If the UDP Modbus gateway is enabled, at least one Modbus RS485
interface must be configured.

UDP Port Standard: 502
Additional UDP ports may also be configured. Observe the port
assignment provided by the ICANN (Internet Corporation for
Assigned Names and Numbers).

Maximum length of
the queue

Length of the gateway queue for other masters’ request telegrams
that have not been answered yet. This option is only taken into
account if a gateway has been activated.

Range of values: 1...20
Default value: 3

Table 163: General Properties of the Modbus Master

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 171 of 344

CPU/COM
The default values of the parameters provide the fastest possible data exchange of Modbus
data between the COM module (COM) and the processor module (CPU) within the HIMax
controller.

These parameters should only be changed if it is necessary to reduce the COM or CPU
load for an application, and the process allows this change.

i
Only experienced programmers should modify the parameters.
Increasing the COM and CPU refresh rate means that the effective refresh rate of the
Modbus data is also increased. The system time requirements must be verified.

Element Description
Refresh Rate
[ms]

Refresh rate in milliseconds at which the COM and CPU exchange
protocol data.
If the Refresh Rate is zero or lower than the cycle time for the controller,
data is exchanged as fast as possible.

Range of values: 0 ... (231-1)
Default value: 0

Within one cycle Activated:
Transfer of all protocol data from the CPU to the COM within a CPU
cycle.

Deactivated:
Transfer of all protocol data from the CPU to the COM, distributed over
multiple CPU cycles, each with 1100 byte per data direction.
This can also allow lowering the cycle time of the controller.

Default value: Activated

Table 164: Parameters of COM/CPU

7 Modbus Communication

Page 172 of 344 HI 801 101 E Rev. 3.00

7.5 Modbus Function Codes (Request Telegrams)
The Modbus function codes (request telegrams) allow the user to write and read variables
in both directions. Individual variables or several consecutive variables can be written or
read.

To create a new request telegram for a TCP/UDP slave

1. In the structure tree, open Resource, Protocols, Modbus Master, Ethernet Slaves,
and then select a TCP/UDP Slave.

2. Right-click TCP/UDP slaves, then click New.
3. In the New Object dialog box, click a Request Telegram.

To create a new request telegram for a gateway slave

1. In the structure tree, open Resource, Protocols, Modbus Master, Modbus Gateway, ,
and then click a gateway slave.

2. Right-click Gateway Slave, then click New.
3. In the New Object dialog box, click a Request Telegram.

To create a new request telegram for a RS485 Modbus slave

1. In the structure tree, open Resource, Protocols, Modbus Master, Serial Modbus, ,
and then click a Modbus slave.

2. Right-click Modbus Slave, then click New.
3. In the New Object dialog box, click a Request Telegram.

7.5.1 Modbus Standard Function Codes
The HIMA Modbus master supports the following Modbus standard function codes:

Element Code Type Description
READ COILS 01 BOOL Read several variables (BOOL) from

the slave.
READ DISCRETE INPUTS 02 BOOL Read several variables (BOOL) from

the slave.
READ HOLDING
REGISTERS

03 WORD Read several variables of any type from
the slave.

READ INPUT REGISTERS 04 WORD Read several variables of any type from
the slave.

WRITE SINGLE COIL 05 BOOL Write one single signal (BOOL) in the
slave.

WRITE SINGLE REGISTER 06 WORD Write one single signal (WORD) in the
slave.

WRITE MULTIPLE COILS 15 BOOL Write several variables (BOOL) in the
slave.

WRITE MULTIPLE
REGISTERS

16 WORD Write several variables of any type in
the slave.

READ WRITE HOLDING
REGISTERS

23 WORD Write and read several variables of any
type in and from the slave.

Table 165: Modbus Function Codes

i
(For more information on Modbus, refer to the Modbus Application Protocol Specification
www.modbus.org)

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 173 of 344

7.5.2 HIMA-Specific Function Codes
HIMA-specific function codes corresponds to the standard Modbus function codes. The two
differences are the maximum permissible process data length of 1100 bytes and the format
of the request and response headers.

Element Code Type Description
Read Coils
Extended

100
(0x64)

BOOL Correspond to function code 01.
Read several variables (BOOL) from the slave’s
import or export1) area.
Maximum length of the process data: 1100
bytes.

Read Discrete
Inputs Extended

101
(0x65)

BOOL Correspond to function code 02.
Read several variables (BOOL) from the slave’s
export area.
Maximum length of the process data: 1100
bytes.

Read Holding
Registers Extended

102
(0x66)

WORD Correspond to function code 03.
Read several variables of any type from the
slave’s import or export1) area.
Maximum length of the process data: 1100
bytes.

Read Input
Registers Extended

103
(0x67)

WORD Correspond to function code 04.
Read several variables of any type from the
slave’s export area.
Maximum length of the process data: 1100
bytes.

Write Multiple Coils
Extended

104
(0x68)

BOOL Correspond to function code 15.
Write several variables (BOOL) in the slave’s
import area.
Maximum length of the process data: 1100
bytes.

Write Multiple
Registers Extended

105
(0x69)

WORD Correspond to function code 16.
Write several variables of any type in the slave’s
import area.
Maximum length of the process data: 1100
bytes.

Read/Write Multiple
Registers Extended

106
(0x6A)

WORD Correspond to function code 23.
Write and read several variables of any type in
and from the slave’s import or export area.
Maximum length of the process data:
1100 bytes (request telegram from the master
Modbus Master).
1100 bytes (response to the Master).

7 Modbus Communication

Page 174 of 344 HI 801 101 E Rev. 3.00

Format of Request and Response Header
The request and response header of the HIMA-specific Modbus function codes are
structured as follows:

Code Request Response
100
(0x64)

1 byte function code 0x64
2 bytes start address
2 bytes number of coils 1...8800(0x2260)

1 byte function code 0x64
2 bytes number of bytes = N
N bytes coil data
(8 coils are packed in one byte)

101
(0x65)

1 byte function code 0x65
2 bytes start address
2 bytes number of discrete inputs 1...8800
(0x2260)

1 byte function code 0x65
2 bytes number of bytes = N
N bytes discrete inputs data
(8 discrete inputs are packed in
one byte)

102
(0x66)

1 byte function code 0x66
2 bytes start address
2 bytes number of registers 1...550 (0x226)

1 byte function code 0x66
2 bytes number of bytes = N
N bytes register data

103
(0x67)

1 byte function code 0x67
2 bytes start address
2 bytes number of registers 1...550 (0x226)

1 byte function code 0x67
2 bytes number of bytes = N
N bytes register data

104
(0x68)

1 byte function code 0x68
2 bytes start address
2 bytes number of coils 1...8800(0x2260)
2 bytes number of bytes = N
N bytes coil data

1 byte function code 0x68
2 bytes start address
2 bytes number of coils
1...8800(0x2260)

105
(0x69)

1 byte function code 0x69
2 bytes start address
2 bytes number of registers 1...550 (0x226)
2 bytes number of bytes = N
N bytes register data

1 byte function code 0x69
2 bytes start address
2 bytes number of registers
1...550 (0x226)

106
(0x6A)

1 byte function code 0x6a
2 bytes read start address
2 bytes number of read registers 1...550
(0x226)
2 bytes write start address
2 bytes number of write registers 1...550
(0x226)
2 bytes number of write bytes = N
N bytes register data

1 byte function code 0x6a
2 bytes number of bytes = N
N bytes register data

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 175 of 344

7.5.3 Read Request Telegrams
The read function codes are used to read variables from the slave.

In addition to the Modbus function, a Modbus master's request telegram also contains the
start address for the read/write area.

To read variables, the Modbus master sends a Read Request Telegram to the Modbus
slave.

The Modbus slave responds to the Modbus master sending back a response telegram with
the variables required.

To configure a read request telegram

1. In the structure tree, click the Request Telegram to be configured.
2. Right-click the request telegram, then click Edit.
3. Select the global variable that should be used as Modbus receive variable and drag it

from the Object Panel onto anywhere in the Input Signals area.
4. Repeat these steps for every further Modbus receive variable.
5. Right-click anywhere in the Inputs Signals area, and then click New Offsets to

renumber the variable offsets.

The following Read Request Telegrams are available:

Read Coils (01) and Extended (100)
Read several variables (BOOL) from the slave.

Element Description
Type Modbus Function Read Coils
Name Any unique name for the Modbus function
Description Description for the Modbus function
Start address of the read area 0 ...65535

Table 166: Request Telegram Read Coils

Read Discrete Inputs (02) and Extended (101)
Read several variables (BOOL) from the slave.

Element Description
Type Modbus Function Read Discrete Inputs
Name Any unique name for the Modbus function
Description Description for the Modbus function
Start address of the read area 0 ...65535

Table 167: Request Telegram Read Discrete Inputs

Read Holding Registers (03) and Extended (102)
Read several variables of any type from the slave.

Element Description
Type Modbus Function Read Holding Registers
Name Any unique name for the Modbus function
Description Description for the Modbus function
Start address of the read area 0 ...65535

Table 168: Request Telegram Read Holding Registers

7 Modbus Communication

Page 176 of 344 HI 801 101 E Rev. 3.00

Read Input Registers (04) and Extended (103)
Read several variables of any type from the slave.

Element Description
Type Modbus Function Read Input Registers
Name Any unique name for the Modbus function
Description Description for the Modbus function
Start address of the read area 0 ...65535

Table 169: Request Telegram Read Input Registers

Read/Write Request Telegram
For reading and writing variables, the Modbus master sends a Read/Write Request
Telegram to the Modbus Slave.

First, the Modbus master writes the write variables into the defined import area of the
Modbus slave.

Afterwards, the Modbus master reads the read signals from the defined export area of the
Modbus slave.

i
In the Read/Write Request Telegram, the Write and Read functions are independent of one
another.
However, the Read/Write Request Telegram is often used such that the variables written by
the Modbus master are read back. This ensures that the transferred variables were written
correctly.

To configure a read/write request telegram

1. In the structure tree, click the Request Telegram to be configured.
2. Right-click the request telegram, then click Edit.

To configure the read variables

1. In the Object Panel, select the global variable that should be connected to one new
Modbus receive variable and drag it onto the Global Variable column of the Modbus
receive variable.

2. Repeat these steps for every further Modbus receive variable.
3. Right-click anywhere in the Inputs Signals area, and then click New Offsets to

renumber the variable offsets.

To configure the write variables

1. In the Object Panel, select the global variable that should be connected to one new
Modbus send variable and drag it onto the Global Variable column of the Modbus send
variable.

2. Repeat these steps for every further Modbus send variable.
3. Right-click anywhere in the Outputs Signals area, and then click New Offsets to

renumber the variable offsets..

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 177 of 344

Read Write Holding Register (23) and Extended (106)
Write and read several variables of any type in and from the slave’s import area.

Element Description
Type Modbus function Read Write Holding Registers
Name Any unique name for the Modbus function
Description Description for the Modbus function
Start address of the read area 0 ...65535
Start address of the write area 0 ...65535

Table 170: Read Write Holding Register

7.5.4 Write Request Telegram
Using the write function codes, variables may only be written in a slave’s import area.

In addition to the Modbus function, a Modbus master's request telegram also contains the
start address for the read/write area.

To write variables, the Modbus master sends a Write Request Telegram to the Modbus
slave.

The Modbus slave writes the received variables into its import area.

The variables that a Modbus master writes to a Modbus slave must be entered in the
Variable Connections dialog box for a write request telegram.

To configure a write request telegram

1. In the structure tree, click the Request Telegram to be configured.
2. Right-click the request telegram, then click Edit.
3. Select the global variable that should be used as Modbus send variable and drag it from

the Object Panel onto anywhere in the Send Signals area.
4. Repeat these steps for every further Modbus send variable.
5. Right-click anywhere in the Send Signals area, and then click New Offsets to

renumber the variable offsets.

The following Write Request telegrams are available:

Write Multiple Coils (15) and Extended (104)
Write several variables (BOOL) in the slave’s import area.

Element Description
Type Modbus function Write Multiple Coils
Name Any unique name for the Modbus function
Description Description for the Modbus function
Start address of the
write area

0 ...65535

Table 171: Request Telegram Write Multiple Coils

Write Multiple Registers (16) and Extended (105)
Write several variables of any type in the slave’s import area.

7 Modbus Communication

Page 178 of 344 HI 801 101 E Rev. 3.00

Element Description
Type Modbus function Write Multiple Registers
Name Any unique name for the Modbus function
Description Description for the Modbus function
Start address of the
write area

0 ...65535

Table 172: Request Telegram Write Multiple Registers

Write Single Coil (05)
Write one single variable (BOOL) in the slave’s import area.

Element Description
Type Modbus function Write Single Coil
Name Any unique name for the Modbus function
Description Description for the Modbus function
Start address of the
write area

0 ...65535

Table 173: Request Telegram Write Single Coil (05)

Write Single Register (06)
Write one single variable (WORD) in the slave’s import area.

Element Description
Type Modbus function Write Single Register
Name Any unique name for the Modbus function
Description Description for the Modbus function
Start address of the
write area

0 ...65535

Table 174: Request Telegram Write Single Register

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 179 of 344

7.5.5 Ethernet Slaves (TCP/UDP Slaves)

The Modbus masters can communicate with up to 64 TCP/IP and 247 UDP/IP slaves.

Figure 49: Modbus Network

To create a new connection to a TCP/UDP slave within the Modbus master

1. In the structure tree, open Resource, Protocols, Modbus Master, Ethernet Slaves.
2. Right-click Ethernet Slaves, then click New.
3. Select TCP/UDP Slaves from the list and click OK to confirm.
4. To configure the TCP/UDP slave in the Modbus master:

 click Edit to assign the system variables, see Chapter 7.5.6.
click Properties to configure the properties, see Chapter 7.5.7.

i
If the TCP/UDP slaves and the Modbus master are located in different subnets, the routing
table must contain the corresponding user-defined routes.

7 Modbus Communication

Page 180 of 344 HI 801 101 E Rev. 3.00

7.5.6 System Variables for TCP/UDP Slaves
The System Variables tab contains system variables that are required to control the
TCP/UDP slave and evaluate its state from within the user program.

The following status variables can be used to evaluate the TCP/UDP slave status from
within the user program:

Element Description
Modbus Slave
Activation Control

The user program activates or deactivates the TCP/UDP slave
using this function.
0: Activate
1: Deactivate

Modbus Slave Error Error Code
The error codes 0x01...0x0b correspond to the Exception
Codes of the Modbus protocol specification.
0x00: No error

Exception Codes:
0x01: Invalid function code
0x02: Invalid addressing
0x03: Invalid data
0x04: (not used)
0x05: (not used)
0x06: Device busy (only gateway)
0x08: (not used)
0x0a: (not used)
0x0b: No Response from Slave (only gateway)

HIMA-specific codes:
0x10: Defective frame received
0x11: Frame with wrong transaction ID received
0x12: Unexpected response received
0x13: Response about wrong connection received
0x14: Wrong response to a write request

0xff: Slave Timeout

Modbus Slave State Connection status of the TCP/UDP slave:
0: Disabled
1: Not connected
2: Connected

Table 175: System Variables for TCP/UDP Slaves

7.5.7 TCP/UDP Slave Properties
To configure the connection to the TCP/UDP slave, the following parameters must be set in
the Modbus master.

Element Description
Type TCP/UDP slave
Name Any unique name for the TCP/UDP slave
Description Any unique description for the TCP/UDP slave
IP Address IP address of the TCP/UDP slave
Port Standard: 502

Additional TCP/UDP ports may also be configured. Observe the
port assignment provided by the ICANN (Internet Corporation for
Assigned Names and Numbers).

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 181 of 344

Type of communication
IP protocol

TCP or UDP
Default value: TCP

TCP connection only on
demand

If the type of the transmission protocol is TCP, the user can set
here whether the connection to this slave should be
automatically removed after each data exchange:
TRUE: Remove connection.
FALSE: Do not remove connection
Default value: FALSE

Master-Slave Data
Exchange [ms]

Time interval for exchanging data with this slave 1 to (231-1).
If the Maximal Number of Retries was exceeded and the slave
could not be reached, the value for Master-Slave Data
Exchange is set four times higher.

Maximum Number of
Resend

Maximal number of send retries if the slave does not respond.
The number of resends can be freely set
(0 ...65535).
With TCP/IP, the value is always set to 0 and cannot be
changed.
HIMA recommends setting a value between 0 and 8.

Receive Timeout [ms] Receive Timeout [ms] for the slave. Once this time period has
expired, a resend is attempted.

Table 176: Configuration Parameters

7 Modbus Communication

Page 182 of 344 HI 801 101 E Rev. 3.00

7.5.8 Modbus Gateway (TCP/UDP Gateway)
The Modbus master can operate as Modbus gateway. In this mode, master requests that
the gateway receives via Ethernet are forwarded to the RS485 und Ethernet slaves
connected to the gateway. Accordingly, the slave's responses are forwarded to the Modbus
master through the gateway.

Up to 121 serial Modbus slaves can be addressed per serial interface.

The slave’s address ranges from 1 to 247. Even if only the Modbus gateway is used, a
Modbus master license is required for Modbus master 2 (Modbus gateway).

Figure 50: Modbus Gateway

i
If the Modbus gateway and the Modbus master are located in different subnets, the routing
table must contain the corresponding user-defined routes.

Modbus Master 1

To create the connection to the Modbus slave within Modbus master 1

1. In the structure tree, open Resource, Protocols, Modbus Master
2. Right-click Modbus Master, then click New.
3. Select Modbus Gateway from the list and click OK to confirm.
4. To configure the Modbus gateway in Modbus Master 1:

click Properties to configure the properties, see Chapter 7.5.15.
In the properties, enter the IP Address for Modbus Master 2 (Modbus gateway).

To create the connection to the gateway slave within Modbus Master 1

In Modbus Master 1, the serial slave must be created as gateway slave.

1. In the structure tree, open Resource, Protocols, Modbus Master, Modbus Gateway.
2. Right-click Modbus Gateway, then click New.
3. Select Gateway Slave from the list and click OK to confirm.
4. To configure the gateway slave in Modbus Master 1:

click Edit to assign the system variables, see Chapter 7.5.10.
click Properties to configure the properties, see Chapter 7.5.11.
In the slave's properties, enter the serial address for the gateway slave.

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 183 of 344

To define input and output variables to the serial slave in Modbus Master 1

1. Right-click Gateway Slave, then click New.
2. Select the required request telegrams from the list.
3. Right-click the corresponding request telegram, then click Edit. Enter the input or

output variables in the Process Variables tab.

Modbus Master 2 (Modbus Gateway):

The gateway function must be enabled in the properties pf Modbus Master 02. The
gateway slaves configured in Master 01 is connected to the serial slaves.

To activate the gateway function in Modbus Master 2

1. In the structure tree, open Resource, Protocols, Modbus Master
2. Right-click Modbus Master, then click Properties.
3. Activate the Enable TCP Gateway parameter to allow that the Modbus master can

additionally operate as TCP gateway.
4. Activate the Enable UDP Gateway parameter to allow that the Modbus master can

additionally operate as UDP gateway.

To configure the serial Modbus in Modbus Master 2

1. In the structure tree, open Resource, Protocols, Modbus Master
2. Right-click Modbus Master, then click New.
3. Select Serial Modbus from the list and click OK to confirm.
4. Select Properties to configure the serial Modbus,

then enter the interface, the baud rate, etc.

To configure the connection to the serial slave in Modbus Master 2

1. In the structure tree, open Resource, Protocols, Modbus Master, Serial Modbus.
2. Right-click Serial Modbus, then click New.
3. Select Modbus Slave from the list and click OK to confirm.
4. Select Properties to configure the Modbus Slave,

then enter the Slave Address for the serial slave.

Serial Slave

To configure the serial Modbus slave

1. In the structure tree, open Resource, Protocols, Modbus Slave
2. Right-click Modbus Slave, then click Edit.
3. Select Properties to configure the Modbus Slave,

then enter the Slave Address for the serial slave.

7 Modbus Communication

Page 184 of 344 HI 801 101 E Rev. 3.00

7.5.9 Gateway Properties
The Modbus gateway allows the Modbus master to communicate with its Modbus slave.

To configure the connection to the Modbus gateway, the following parameters must be set
in the Modbus master.

Element Description
Type Modbus Gateway
Name Any unique name for the gateway
Description Any unique description for the TCP/UDP slave
Communication IP
Protocol

TCP or UDP
Default value: TCP

IP Address Gateway’s IP address that the Modbus Master should use to
communicate with its Modbus slave.
Default value: (0.0.0.0)

Port Default value: 502

Table 177: Connection Parameters for the Modbus Gateway

7.5.10 System Variables for the Gateway Slave
The System Variables Editor contains the following three status variables (system
variables).

Element Description
Modbus Slave
Activation Control

Using this function, the user program can enable or disable the
gateway slave.
0: Activate
1: Deactivate

Modbus Slave Error Parameters: the same as for TCP/UDP slave, see Chapter7.5.6.
Modbus Slave State Connection status of the gateway slave:

0: Disabled
1: Not connected
2: Connected

Table 178: Status Variables for the Gateway Slave

7.5.11 Gateway Slave Properties
To configure the connection to the gateway slave, the following parameters must be set in
the Modbus master.

Element Description
Type Gateway Slave
Name Any unique name for the gateway slave
Description Any unique description for the gateway slave
Slave Address 1 ...247
The remaining parameters are the same as for TCP/UDP slave, see Chapter7.5.7.

Table 179: Connection Parameters for the Gateway Slave

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 185 of 344

7.5.12 Serial Modbus
The Modbus masters can communicate with up to 247 serial slaves. According to the
standard, a total of three repeaters may be used such that a maximum of 121 stations are
possible per serial interface on a master.

i
For more information on the pin assignment of the HIMax COM module's D-sub connectors
(fb1, fb2), refer to Chapter 3.7.1.

Figure 51: Serial Modbus

The HIMA Modbus master supports data transfer in RTU format (Remote Terminal Unit).

The RTU telegram frame starts and ends with the idle characters set by the user (Default
value: 5 idle characters).

Beginn des
Rahmens
5 char

Ende des
Rahmens
5 char

Adresse
8 Bit

Funktion
8 Bit

Daten
N * 8 Bit

CRC Check
16 Bit

Modbus Telegramm

Figure 52: Modbus Telegram

To create a serial Modbus within the Modbus master

1. In the structure tree, open Resource, Protocols, Modbus Master, Serial Modbus.
2. Right-click Serial Modbus, then click New.
3. Select Modbus Slave from the list and click OK to confirm.
4. To configure the Modbus slave in the Modbus master:

click Edit to assign the system variables, see Chapter 7.5.14.
click Properties to configure the properties, see Chapter 7.5.15.

7 Modbus Communication

Page 186 of 344 HI 801 101 E Rev. 3.00

7.5.13 Serial Modbus Properties
To configure the serial Modbus master, the following parameters must be set.

Element Description
Type Serial Modbus
Name The serial Modbus name may be selected by the user
Description Any unique description for the serial Modbus
Interface Fieldbus interface which should be used for the Modbus master (fb1,

fb2).
Baud rate [bps] Transfer rate for RS485

Possible values:
 38400 bit/s
 19200 bit/s
 9600 bit/s
 4800 bit/s
 2400 bit/s
 1200 bit/s
 600 bit/s
 300 bit/s
Default value: 38400

Parity none
Odd
Even
Default value: Even

Stop Bits Standard (adapts the number of stop bits to the parity:
with parity = 1 stop bit, no parity = 2 stop bits)
One stop bit
Two stop bits
Default value: Default

Number of Idle
Chars

Number of idle characters at the start and the end of a RTU
telegram frame.
Range of values: 0 ... 65535
Default value: 5 characters

Table 180: Parameters for the Serial Modbus Master

7.5.14 System Variables for the Modbus Slave
The Edit Editor contains three status variables (system variables).

Element Description
Modbus Slave
Activation Control

Activate or deactivate the Modbus slave in the user program.
0: Activate
1: Deactivate

Modbus Slave Error Parameters: the same as for TCP/UDP slave, see Chapter
7.5.7.

Modbus Slave State Connection status of the Modbus slave:
0: Disabled
1: Not connected
2: Connected

Table 181: System Variables in the Modbus Slave

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 187 of 344

7.5.15 Modbus Slave Properties
To configure the connection to the serial slave, the following parameters must be set in the
Modbus master.

Element Description
Type Modbus slave
Name The Modbus slave name may be selected by the user
Description Any unique description for the Modbus Slave
Slave Address 1 ...247
The remaining parameters are the same as for TCP/UDP slave, see Chapter7.5.7.

Table 182: Connection Parameters for the Modbus Master

i
In the serial Modbus slave, the Receive Timeout depends on the transfer rate which has
been set.
If the baud rate is 19200 [bit/s] or higher, the default value for Receive Timeout may be
used. If the baud rate is lower than 19200 [bit/s], the value for Receive Timeout must be
increased.

7.6 Control Panel (Modbus Master)
The Control Panel can be used to verify and control the settings for the Modbus master.
Details about the master's current state (e.g., master state, etc.) are displayed.

To open the Control Panel for monitoring the Modbus Master

1. In the structure tree, click Resource.
2. Click Online on the Action Bar.
3. In the System Log-in window, enter the access data to open the Control Panel for the

resource.
4. In the structure tree associated with the Control Panel, select Modbus Master.

7 Modbus Communication

Page 188 of 344 HI 801 101 E Rev. 3.00

7.6.1 Context Menu (Modbus Master)
The following commands can be chosen from the context menu for the selected Modbus
master:

Offline

This command is used to stop the Modbus master.

Operate

This command is used to start the Modbus master.

Reset statistical data

Reset the statistical data (e.g., number of bus errors, min./max. cycle time etc.) to 0.

7.6.2 View Box (Modbus Master)
The view box displays the following values of the selected Modbus master.

Element Description
Name Modbus master name
Master State It indicates the current protocol state:

OPERATE
OFFLINE

Bus Error Count Counter for bus errors
Disturbed Connections Disturbed connection count
CPU Load (planned)
CPU Load (actual)

See Chapter 7.4.2

Table 183: View Box of the Modbus Master

7.7 Control Panel (Modbus Master->Slave)
The Control Panel is used to verify and activate/deactivate the settings for the
communication partner. Details about the current status of the communication partner (e.g.,
slave state, etc.) are displayed.

To open Control Panel for monitoring the Modbus connection

1. In the structure tree, click Resource.
2. Click Online on the Action Bar.
3. In the System Log-in window, enter the access data to open the Control Panel for the

resource.
4. In the structure tree associated with the Control Panel, select Modbus Master, and then

click a Slave.

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 189 of 344

7.8 FBx LED Function in the Modbus Master
The COM module indicates the state of the local Modbus Master protocol using one of the
LEDs assigned to the fieldbus interface. The states of these LEDs are specified in the
following table.

FBx LED Color Description
OFF Yellow The Modbus master protocol is not active!

I.e. the controller is in the STOP state or no Modbus master is
configured.

Blinking Yellow The Modbus master protocol is active and is exchanging data with
the Modbus slave.

OFF Red The Modbus master protocol is not disturbed.
Blinking Red The following events result in a malfunction.

 Incorrect response or error message from the slave received
 Timeout for one or more slaves
 Calculating time budget exceeded

If no faults occur for a period longer than 5 seconds, the state
changes to "Protocol not disturbed".

Table 184: FBx LED in the MODBUS Master

7 Modbus Communication

Page 190 of 344 HI 801 101 E Rev. 3.00

7.9 HIMA Modbus Slave
The HIMA Modbus slave can simultaneously use the serial interface (RS485) and the
TCP/UDP (Ethernet) to operate various Modbus masters.

Equipment and System Requirements

Element Description
HIMA controller HIMax with COM module
Processor module The Ethernet interfaces on the processor module may not be used

for Modbus TCP.
COM module Ethernet 10/100BaseT

Pin assignment of the D-sub connectors FB1 and FB2
If Modbus RTU is used, the serial fieldbus interface (FB1 or FB2)
used on the COM module must be equipped with an optional
HIMA RS485 submodule.
For more information on the interface assignment, see Chapter
3.7.

Activation Each of the two Modbus slave functions must be enabled
individually, see Chapter 3.5.
Modbus Slave RTU (RS485)
Modbus Slave TCP

Table 185: Equipment and System Requirements for the HIMA Modbus Slave

Modbus Slave (Properties)

Element Description
Modbus slave One Modbus slave can be configured for each COM module.
Redundancy A maximum of 10 redundant Modbus slave communication

module pairs can be operated in a HIMax system.
As long as the Modbus slave communication module pair operates
redundantly, the same input and output data is exchanged with the
Modbus master via both communication modules.

Number of Master
Accesses

RTU: Only one Modbus master can access the slave due to the
RS485 transfer mode system.
TCP: A maximum of 20 Modbus masters can access the slave.

Max. Size of
Send data

128 kB

Max. Size of
Receive data

128 kB

Display format of the
Modbus data

The HIMax controllers use the big endian format for data.
Example: 32-bit data (e.g., DWORD, DINT):

32-bit data (hex) 0x12345678
Memory offset 0 1 2 3
Big endian (HIMax) 12 34 56 78
Middle endian (H51q) 56 78 12 34
Little endian 78 56 34 12

Table 186: Properties of the Modbus Slave

7.9.1 Configuring the Modbus TCP Slave

To create a new HIMA Modbus Slave

1. In the structure tree, open Configuration, Resource, Protocols.

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 191 of 344

2. On the context menu for protocols, select New, Modbus Slave Set to add a new
Modbus slave set.

3. Select Edit on the context menu for the Modbus slave set, open the Modbus Slave Set
Properties, and retain the default values.

4. Select the Modbus slave tab and perform the following actions:
- Select COM Module
- Activate Enable TCP
- The remaining parameters retain the default values.

i
Chapter 7.2 provides an example of how to configure the connection between an HIMA
Modbus TCP slave and an HIMA Modbus TCP master.

7.9.2 Configuring the Redundant Modbus TCP Slave

To create a redundant HIMA Modbus slave

1. In the structure tree, open Configuration, Resource, Protocols, Modbus Slave Set.
2. Select Edit on the context menu for the Modbus slave set, open the Modbus Slave Set

Properties, and perform the following actions:
- Activate Set Redundant Operation.

 The Modbus Slave Redundant tab is automatically added.
3. Select the Modbus Slave Redundant tab and perform the following actions:

- Select COM Module
- Activate Enable TCP

The remaining parameters retain the default values.

i
The send and receive variables assigned in the Modbus slave set are valid for both Modbus
slaves.

7 Modbus Communication

Page 192 of 344 HI 801 101 E Rev. 3.00

7.9.3 Rules for Redundant Modbus TCP Slaves
The redundant configuration of the HIMax system is recommended for operating the
Modbus slave communication modules redundantly, see the System Manual HI 801 001 E
for more details.
Otherwise, the consistent behavior of the Modbus slave communication module pairs
towards their external partner (Modbus master) can no longer be ensured once the first
error has occurred within the HIMax system.

Slots Allowed for the Redundant Modbus Slave COM Modules
To minimize the risk of potential collisions on the HIMax system bus, the system bus
segments (1 to 3) on the base plate must be taken into account. For this reason, the
redundant Modbus slave communication modules should only be inserted in the same
segment of a base plate in the following slots:

Segment Slot
1 3...6 (as long as no processor module has been planned)
2 7...14
3 15...18

Table 187: Slots Allowed for the Redundant Modbus Slave COM Modules

Redundant Modbus Slave COM Modules in Different Base Plates
A maximum of two redundant Modbus slave communication modules located in different
base plates (0 to 15) may be operated.
Additionally, these redundant Modbus slave communication modules may only be located
in adjacent base plates.

 NOTE

System malfunction possible!
Only use slots for redundant Modbus slave communication modules in accordance
with these rules!

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 193 of 344

7.10 Menu Functions of the HIMA Modbus Slave Set
The Edit function on the context menu for the Modbus Slave Set opens the Modbus Slave
Set Properties dialog box. The dialog box contains the following tabs:

7.10.1 Modbus Slave Set Properties
The following parameters for the Modbus slave can be set in the Modbus Slave Set
Properties tab.

Element Description
Name Name of the Modbus slave set
Use Max CPU Load Activated:

Use CPU load limit from the field Max. CPU Load [%]

Deactivated:
Do not use the CPU Load limit for this protocol.

Max. CPU Load [%] Maximum CPU load of the COM module that can be used for
processing the protocols.
Range of values: 1...100%
Default value: 30%

Set Redundant
Operation.

Activated: Redundant Operation
Deactivated: Mono Operation

Default value: Deactivated
Max. Response Time
[ms]

Time period after the reception of a request within which the
Modbus slave may respond.
Range of values: 0...-(2³¹-1) ms
Default value: 0 ms (0 = No limitation)

Area for reading the
function codes 1 and
3

This parameter defines from which data field the data should be
read for the function codes 1 and 3.
Range of values:
 Import area
 Export area (compatible with 51q)

Area to Read function
code 23

The user can specify the Modbus slave's area from which the
function code 23 should be read.
Import area: The Master has read/write access to the

slave's import area.
Export area: The Master reads from the slave's export area

are writes in the slave's import area.
Note: writing and reading take place within a single CPU cycle.
This means that the read data was provided during the last CPU
cycle.

Initial data at Master
timeout

Once the Master timeout has expired, the connection status is set
to "not connected".
The input variables of the user program are processed depending
on the following configuration:
Adopt initial data Input data is reset to its initial

values.
Retain Last Value The input data retains its last

value.

7 Modbus Communication

Page 194 of 344 HI 801 101 E Rev. 3.00

Behavior on Lost
Connection within the
CPU

This parameter is used to define wether the value should be
adopted from Initial Data at Master Timeout.
If a project is converted from versions lower than V3, this
value must be deactivated.
Activated: The value is adopted from Initial Data at

Master Timeout.
Deactivated: The input data retains the last value.

Default value: Deactivated
Alternative register /
bit addressing

Activated Use the alternative addressing
Deactivated Do not use the alternative addressing

Default value: Deactivated, see Chapter 7.12.
Register Area Offset
Bits Input

Range of values: 0 ... 65535
Default value: 0

Register Area Offset
Bits Output

Range of values: 0 ... 65535
Default value: 0

Bit Area Offset
Register Input

Range of values: 0 ... 65535
Default value: 0

Bit Area Offset
Register Output

Range of values: 0 ... 65535
Default value: 0

Refresh Rate [ms] Refresh rate in milliseconds at which the COM and CPU exchange
protocol data.
If the Refresh Rate is zero or lower than the cycle time for the
controller, data is exchanged as fast as possible.
Range of values: 0 ... (231-1)
Default value: 0

Within one cycle Activated: Transfer of all protocol data from the CPU to the
COM within a CPU cycle.

Deactivated: Transfer of all protocol data from the CPU to the
COM, distributed over multiple CPU cycles, each
with 1100 byte per data direction.
This can also allow lowering the cycle time of the
controller.

Default value: Activated

Table 188: Modbus Slave Properties Set Tab

7.10.2 Register Variable
(Access Tab)

The variables that the master addresses 16 bit by bit are entered in the Register Variables
tab (function code 3, 4, 6, 16, 23, 102, 103, 105, 106).

7.10.3 Bit Variables
(Bit and/or coil access)

The variables that the master addresses bit by bit are entered in the Bit Variables tab
(function code 1, 2, 5, 15, 100, 101, 104).

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 195 of 344

7.10.4 Assigning Send/Receive Variables
All the variables that the Modbus slave receives from the Modbus master are entered in the
Inputs tab.

To configure the send variables of the Modbus slave

1. In the structure tree, select the Modbus Slave that should be configured.
2. Right-click Modbus Slave, and then click Edit.
3. Select the Register Variables or Bit Variables tab.
4. Drag one variable from the Object Panel onto the Register Outputs area.
5. Repeat these steps for every further variable that should be defined as send variable for

the Modbus Slave.
6. Right-click the Register Outputs area, and then click New Offsets.

To configure the receive variables of the Modbus slave

1. In the structure tree, select the Modbus Slave that should be configured.
2. Right-click Modbus Slave, and then click Edit.
3. Select the Register Variables or Bit Variables tab.
4. Drag one variable from the Object Panel onto the Register Inputs area.
5. Repeat these steps for every further variable that should be defined as receive variable

for the Modbus Slave.
6. Right-click the Register Inputs area, and then click New Offsets.

7.10.5 Modbus Slave Set System Variables
The Modbus Slave Set System Variables includes the following system variables.

Element Description
Redundant State This parameter describes the redundancy state of the

redundant Modbus slave communication module pair.
0: Redundant Modbus Slave COM Modules active
1: First Modbus Slave COM Module not active
2: Redundant Modbus Slave COM Module not active
3: Both Modbus Slave COM Modules not active

Table 189: View Box of the Modbus Master

7.10.6 Modbus Slave and Modbus Slave Redundant
The Modbus Slave tab contains the two tabs Properties and System Variables.

i
The pin assignment of the D-sub connectors (fb1, fb2) is described in the manuals of the
corresponding HIMax module.

7 Modbus Communication

Page 196 of 344 HI 801 101 E Rev. 3.00

Properties
Element Description
Module Selection of the COM module within which the protocol is processed.
Master Monitoring
Time [ms]

Timeout within which the slave must receive at least one request
from the master.
If the slave receives no request within the timeout, the "Master
Connection Status" is set to "not connected".
Range of values: 1...231-1 [ms]
Default value : 0=Off

Parameters for the Ethernet interface
Enable the TCP/IP
connection

Activated The TCP/IP connection is enabled
Deactivated TCP/IP connection disabled

Default value: Deactivated
TCP Port Default value: 502
Maximum number
of
TCP Connections

Maximum number of TCP connections opened simultaneously and
operating as server.
Range of values: 1...20
Default value: 3

UDP Enable Activated UDP/IP connection is enabled
Deactivated UDP/IP connection disabled

Default value: Deactivated
UDP Port Default value: 502
Parameters for the serial interface
Name Name of the serial interface
Interface Selection of the fieldbus interfaces that are available and can be

used for the Modbus slave (none, fb1, fb2).
Slave Address Slave bus address

Range of values: 1 ... 247
Baud rate [bps] Possible value for transfer rate for RS485:

 38400 bit/s
 19200 bit/s
 9600 bit/s
 4800 bit/s
 2400 bit/s
 1200 bit/s
 600 bit/s
 300 bit/s

Parity Range of values:
 none
 Odd
 Even

Default value: Even
Stop Bits Range of values:

Standard (adapts the number of stop bits to the parity:
with parity = 1 stop bit, no parity = 2 stop bits)
One stop bit
Two stop bits
Default value: Default

Number of Idle
Chars

Number of idle characters at the start and the end of a RTU
telegram frame.
Range of value: 1 ... 65535
Default value: 5 characters

Table 190: TCP and UDP Ports Tab for HIMA Modbus Slave

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 197 of 344

The System Variables tab contains system variables that are required to control the
Modbus Slave and evaluate its state from within the user program.

Element Description
Average Concurrent Master
Requests

Average number of concurrent master requests

Valid Master Requests Number of valid master requests since the last reset of all
counters or last HIMax controller's start-up.

Master Requests Total number of master requests since the last reset of all
counters or last HIMax controller's start-up.

Master Monitoring Time [ms] Timeout within which the slave must receive at least one
request from the master.
If the slave does not receive any request within the timeout
period, the Master Connection Status is set to 1 not
connected.
Depending on the configuration, the user program's input
data is reset to its initial values or it retains its last value.

Master Connection State FALSE: Not Connected
TRUE: Connected

Maximum Concurrent
Master Requests

Maximum number of concurrent master requests

Response Timeouts Number of response timeouts since the last reset of all
counters or last HIMax controller's start-up. The response
timeout is the maximum time within which the sending
station must receive the message acknowledgment.

Reset All Counters This system variable is used to reset all counters in the user
program.
A change from 0 to 1 triggers the reset function.
Values greater than 1 are treated as 1.

Invalid Master Requests Number of invalid master requests since the last reset of all
counters or last HIMax controller's start-up.
An invalid request is a request upon which the Modbus
slave sends an error code to the Modbus master.
Incorrect transmissions that were already detected and
filtered out at the driver level (framing errors, CRC errors,
length errors) are not included here, but they are reported
through the diagnosis.

Rejected Master Requests Number of rejected master requests since the last reset of
all counters or last HIMax controller's start-up.

Table 191: System Variables Tab for the HIMA Modbus Slave

7 Modbus Communication

Page 198 of 344 HI 801 101 E Rev. 3.00

7.10.7 Modbus Function Codes
The HIMA Modbus slave supports the following Modbus function codes:

Element Code Type Description
READ COILS 01 BOOL Read several variables (BOOL) from the slave’s

import or export1) area.
Maximum length of the process data: 251 bytes.

READ DISCRETE
INPUT

02 BOOL Read several variables (BOOL) from the slave’s
export area.
Maximum length of the process data: 251 bytes.

READ HOLDING
REGISTER

03 WORD Read several variables of any type from the
slave’s import or export1) area.
Maximum length of the process data: 250 bytes.

READ INPUT
REGISTER

04 WORD Read several variables of any type from the
slave’s export area.
Maximum length of the process data: 250 bytes.

WRITE SINGLE
COIL

05 BOOL Write one single signal (BOOL) in the slave’s
import area.
Maximum length of the process data: 1 byte

WRITE SINGLE
REGISTER

06 WORD Write one single signal (WORD) in the slave’s
import area.
Maximum length of the process data: 2 bytes.

Diagnostics 08 x Only sub-code 0: Loop-back function of the
slave.

WRITE MULTIPLE
COILS

15 BOOL Write several variables (BOOL) in the slave’s
import area.
Maximum length of the process data: 247 bytes.

WRITE MULTIPLE
REGISTER

16 WORD Write several variables of any type in the slave’s
import area.
Maximum length of the process data: 246 bytes.

READ WRITE
MULTIPLE
REGISTER

23 WORD Write and read several variables of any type in
and from the slave’s import or export area.
Maximum length of the process data:
242 bytes (request telegram from the master
Modbus Master).
250 bytes (response to the Master).

Read Device
Identification

43 x Transmit the slave identification data to the
master.

1)The export area can only be selected in HIMA slaves

Table 192: Modbus Function Codes of the HIMA Modbus Slave

In addition to the WORD data type (2 bytes), the function codes 03, 04, 16 and 23 support
all other data types.

The start address of the first variable to be transferred and the number of registers/bits of
the variables to be transferred must be entered for each request.

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 199 of 344

Error Codes:

 If the master sends a telegram with unknown function codes, the controller responds
with error code 1 (invalid code).

 If the telegram does not match the Modbus slave configuration (i.e., the request
telegram does not ends "even" at one variable limit), the slave responds with error code
2 (invalid data).

 If the master sends a telegram with incorrect values (e.g., length fields), the slave
responds with error code 3 (invalid value).

Communication only takes place if the COM module is in the RUN state. If the COM
module is in any other operating state, the master does not respond to any requests.

Note for Modbus Function: Read Device Identification (43)

The HIMax Modbus slave provides the identification data to the master and supports the
following object IDs:

Basic:
0x00 VendorName “HIMA Paul Hildebrandt GmbH + Co KG”
0x01 ProductCode “<Module serial number>”
0x02 MajorMinorRevision “<COM Vx.y CRC>”

Regular:
0x03 VendorUrl “http://www.hima.de”
0x04 ProductName “HIMax”
0x05 ModelName “HIMax”
0x06 UserApplicationName “--------[S.R.S]”

Extended:
0x80 blank “--------”
0x81 blank “--------”
0x82 blank “--------”
0x83 blank “--------”
0x84 blank “--------”
0x85 blank “--------“
0x86 CRC of the file modbus.config “<0x234adcef>“
(configuration file for the Modbus slave protocol in the CPU file system. To compare with
the information specified in SILworX, Online/Version comparison).

The following ReadDevice ID Codes are supported:
(1) Read Basic device identification (stream access)
(2) Read regular device identification (stream access)
(3) Read extended device identification (stream access)
(4) Read one specific identification object (individual access)

(For more information on Modbus, refer to the Modbus "Application Protocol Specification"
www.modbus.org)

7 Modbus Communication

Page 200 of 344 HI 801 101 E Rev. 3.00

7.10.8 HIMA-Specific Function Codes
HIMA-specific function codes corresponds to the standard Modbus function codes. The
only differences are the maximum permissible process data length of 1100 bytes and the
format of the request and response headers.

Element Code Type Description
Read Coils
Extended

100
(0x64)

BOOL Correspond to function code 01.
Read several variables (BOOL) from the slave’s
import or export1) area.
Maximum length of the process data: 1100
bytes.

Read Discrete
Inputs Extended

101
(0x65)

BOOL Correspond to function code 02.
Read several variables (BOOL) from the slave’s
export area.
Maximum length of the process data: 1100
bytes.

Read Holding
Registers Extended

102
(0x66)

WORD Correspond to function code 03.
Read several variables of any type from the
slave’s import or export1) area.
Maximum length of the process data: 1100
bytes.

Read Input
Registers Extended

103
(0x67)

WORD Correspond to function code 04.
Read several variables of any type from the
slave’s export area.
Maximum length of the process data: 1100
bytes.

Write Multiple Coils
Extended

104
(0x68)

BOOL Correspond to function code 15.
Write several variables (BOOL) in the slave’s
import area.
Maximum length of the process data: 1100
bytes.

Write Multiple
Registers Extended

105
(0x69)

WORD Correspond to function code 16.
Write several variables of any type in the slave’s
import area.
Maximum length of the process data: 1100
bytes.

Read/Write Multiple
Registers Extended

106
(0x6A)

WORD Correspond to function code 23.
Write and read several variables of any type in
and from the slave’s import or export area.
Maximum length of the process data:
1100 bytes (request telegram from the master
Modbus Master).
1100 bytes (response to the Master).

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 201 of 344

Format of Request and Response Header
The request and response header of the HIMA-specific Modbus function codes are
structured as follows:

Code Request Response
100
(0x64)

1 byte function code 0x64
2 bytes start address
2 bytes number of coils 1...8800(0x2260)

1 byte function code 0x64
2 bytes number of bytes = N
N bytes coil data
(8 coils are packed in one byte)

101
(0x65)

1 byte function code 0x65
2 bytes start address
2 bytes number of coils 1 ... 8800 (0x226)

1 byte function code 0x65
2 bytes number of bytes = N
N bytes coil data
(8 coils are packed in one byte)

102
(0x66)

1 byte function code 0x66
2 bytes start address
2 bytes number of registers 1...550 (0x226)

1 byte function code 0x66
2 bytes number of bytes = N
N bytes register data

103
(0x67)

1 byte function code 0x67
2 bytes start address
2 bytes number of registers 1...550 (0x226)

1 byte function code 0x67
2 bytes number of bytes = N
N bytes register data

104
(0x68)

1 byte function code 0x68
2 bytes start address
2 bytes number of coils 1...8800(0x2260)
2 bytes number of bytes = N
N bytes coil data

1 byte function code 0x66
2 bytes start address
2 bytes number of coils
1...8800(0x2260)

105
(0x69)

1 byte function code 0x69
2 bytes start address
2 bytes number of registers 1...550 (0x226)
2 bytes number of bytes = N
N bytes register data

1 byte function code 0x69
2 bytes start address
2 bytes number of registers
1...550 (0x226)

106
(0x6A)

1 byte function code 0x6a
2 bytes read start address
2 bytes number of read registers 1...550
(0x226)
2 bytes write start address
2 bytes number of write registers 1...550
(0x226)
2 bytes number of write bytes = N
N bytes register data

1 byte function code 0x6a
2 bytes number of bytes = N
N bytes register data

7 Modbus Communication

Page 202 of 344 HI 801 101 E Rev. 3.00

7.11 Addressing Modbus using Bit and Register
The addressing mode adheres to the Modbus addressing standard and only knows the two
data lengths bit (1 bit) and register (16 bits) that are used to transfer all the data types
allowed.

There are two areas within the Modbus slave: a Register Area (inputs and outputs) and a
Bit Area (inputs and outputs). Both areas are separated from one another and can accept
all permitted data types. The difference between these areas resides in the Modbus
function codes permitted for accessing these areas.

i
The Modbus addressing using bit and register does not guarantee the variable integrity,
meaning that any arbitrary portion of a variable can be read or written with this access
mode. Variables of type BOOL are stored in a packed format, i.e., each variable of type
BOOL is stored as a bit within a byte.

7.11.1 Register Area
The variables in the Register Area are created in the Register Variables tab. For more
information on how to assign send/receive variables, refer to Chapter 7.10.4.

i
To access variables in the Register Area with the Modbus function codes 1, 2, 5, 15, the
variables must be mirrored in the Bit Area, see Chapter 7.12.1.

The variables in the Register Area can only be accessed using the Modbus function codes
3, 4, 6, 16, 23. To do this, enter the start address of the first variable in the properties of the
function code.

Example: Accessing the Variables in the Register Area of the Modbus Slave

Register variables Register.Bit Bit
00_Register_Area_WORD 0.0 0
01_Register_Area_SINT 1.8 16
02_Register_Area_SINT 1.0 24
03_Register_Area_REAL 2.0 32
04_Register_Area_BOOL 4.8 64
05_Register_Area_BOOL 4.9 65
06_Register_Area_BOOL 4.10 66
07_Register_Area_BOOL 4.11 67
08_Register_Area_BOOL 4.12 68
09_Register_Area_BOOL 4.13 69
10_Register_Area_BOOL 4.14 70
11_Register_Area_BOOL 4.15 71
12_Register_Area_BOOL 4.0 72
13_Register_Area_BOOL 4.1 73
14_Register_Area_BOOL 4.2 74
15_Register_Area_BOOL 4.3 75
16_Register_Area_BOOL 4.4 76
17_Register_Area_BOOL 4.5 77
18_Register_Area_BOOL 4.6 78
19_Register_Area_BOOL 4.7 79
Table 193: Register Variables in the Register Area of the Modbus Slave

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 203 of 344

HIMA Modbus Master Configuration of the Request Telegram
To read the variables 01_Register_Area_SINT to 03_Register_Area_REAL in the
Modbus master

1. Right-click TCP/UDP slaves, then click New.
2. From the list, select Read Holding Registers (3).
3. Right-click Read Holding Registers (3), then click Properties.

- Enter 1 in the start address of the read area.
4. Right-click Read Holding Registers (3), then click Edit.
5. Drag the following variables from the Object Panel onto the Input Variables tab..
Register variables Offset
01_Register_Area_SINT 0
02_Register_Area_SINT 1
03_Register_Area_REAL 2

6. Right-click anywhere in the Output Variables area to open the context menu and click
New Offsets to renumber the variable offsets.

7.11.2 Bit Area
The variables in the Bit Area are created in the Bit Variables tab. For more information on
how to assign send/receive variables, refer to Chapter 7.10.4.

i
To access variables in the Register Area with the Modbus function codes 3, 4, 6, 16 and
23, the variables must be mirrored in the Bit Area, see Chapter 7.12.2.

The variables in the Bit Area can only be accessed using the Modbus function codes 1, 2,
5, 15. To do this, enter the start address of the first variable in the properties of the function
code.

Example: Accessing the Variables in the Bit Area of the Modbus Slave

Bit Variables Bit Register.Bit
00_BIT_Area_WORD 0 0.0
01_BIT_Area_SINT 16 1.8
02_BIT_Area_SINT 24 1.0
03_BIT_Area_REAL 32 2.0
04_BIT_Area_BOOL 64 4.8
05_BIT_Area_BOOL 65 4.9
06_BIT_Area_BOOL 66 4.10
07_BIT_Area_BOOL 67 4.11
08_BIT_Area_BOOL 68 4.12
09_BIT_Area_BOOL 69 4.13
10_BIT_Area_BOOL 70 4.14
11_BIT_Area_BOOL 71 4.15
12_BIT_Area_BOOL 72 4.0
13_BIT_Area_BOOL 73 4.1
14_BIT_Area_BOOL 74 4.2
15_BIT_Area_BOOL 75 4.3
16_BIT_Area_BOOL 76 4.4
17_BIT_Area_BOOL 77 4.5
18_BIT_Area_BOOL 78 4.6
19_BIT_Area_BOOL 79 4.7
Table 194: Bit Variables in the Bit Area of the Modbus Slave

HIMA Modbus Master Configuration of the Request Telegram
To read the variables 04_BIT_Area_BOOL to 06_Area_BOOL in the Modbus master

7 Modbus Communication

Page 204 of 344 HI 801 101 E Rev. 3.00

1. Right-click TCP/UDP slaves, then click New.
2. From the list, select Read Coils (1).
3. Right-click Read Coils (1), then click Properties.

- Enter 64 in the start address of the read area.
4. Right-click the request telegram Read Coils (1), then click Properties.
5. Drag the following variables from the Object Panel onto the Input Variables tab..
Bit Variables Offset
04_BIT_Area_BOOL 0
05_BIT_Area_BOOL 1
06_BIT_Area_BOOL 2

6. Right-click anywhere in the Output Variables area to open the context menu and click
New Offsets to renumber the variable offsets.

7.12 Offsets for Alternative Modbus Addressing
To access the variables in the Bit Area using the Modbus function codes (of type 'register'),
the variables must be mirrored in the Register Area, and to access the variables in the
Register Area using the Modbus function codes (of type 'bit'), the variables must be
mirrored in the Bit Area. The offsets for the mirrored variables are entered in the
Properties/Offsets tab.

To mirror the variables in the Bit Area and Register Area

1. Right-click the Modbus Slave and select Edit, and Offsets, then activate Use
Alternative Register/Bit Addressing.

 This action mirrors the variables in the corresponding area.
2. Enter the offset for the mirrored variables in the Bit Area and Register Area.

i
The existing variables and the corresponding variables mirrored in the B/Register Area
must not overlap with respect to the Modbus addresses.

Element Description / Range of values
Alternative register / bit addressing Activated Use the alternative addressing

Deactivate
d

Do not use the alternative
addressing

Default value: Deactivated
Register area offset / bit inputs 0 ...65535
Register area offset / bit outputs 0 ...65535
Bit area offset / register inputs 0 ...65535
Bit area offset / register outputs 0 ...65535
Table 195: Offsets Tab for HIMA Modbus Slave

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 205 of 344

7.12.1 Access to the Register Variables in the Bit Area of the Modbus Slave
To access the Register Area with the Modbus function codes (of type 'bit') 1, 2, 5, 15, the
register variables must be mirrored in the Bit Area. The offsets for the mirrored register
variables must be entered in the Properties/Offsets tab.

Example:

Bit area offset / register inputs 8000
Bit area offset / register outputs 8000
The variables mirrored from the Register Area to the Bit Area are located here starting with
Bit Address 8000.

Mirrored Register Variables Bit
00_Register_Area_WORD 8000
01_Register_Area_SINT 8016
02_Register_Area_SINT 8024
03_Register_Area_REAL 8032
04_Register_Area_BOOL 8064
05_Register_Area_BOOL 8065
06_Register_Area_BOOL 8066
07_Register_Area_BOOL 8067
08_Register_Area_BOOL 8068
09_Register_Area_BOOL 8069
10_Register_Area_BOOL 8070
11_Register_Area_BOOL 8071
12_Register_Area_BOOL 8072
13_Register_Area_BOOL 8073
14_Register_Area_BOOL 8074
15_Register_Area_BOOL 8075
16_Register_Area_BOOL 8076
17_Register_Area_BOOL 8077
18_Register_Area_BOOL 8078
19_Register_Area_BOOL 8079
Table 196: Variables Mirrored from the Register Area to the Bit Area

HIMA Modbus Master Configuration of the Request Telegram
To read the variables 04_Register_Area_BOOL to 06_Register_Area_BOOL in the
Modbus master

1. Right-click TCP/UDP slaves, then click New.
2. From the list, select Read Coils (1).
3. Right-click Read Coils (1), then click Properties.

- Enter 8064 in the start address of the read area.
4. Right-click the request telegram Read Coils (1), then click Properties.
5. Drag the following variables from the Object Panel onto the Input Variables tab..
Mirrored Register Variables Offset
04_Register_Area_BOOL 0
05_Register_Area_BOOL 1
06_Register_Area_BOOL 2

6. Right-click anywhere in the Output Variables area to open the context menu and click
New Offsets to renumber the variable offsets.

7 Modbus Communication

Page 206 of 344 HI 801 101 E Rev. 3.00

7.12.2 Access to the Bit Variables in the Register Area of the Modbus Slave
To access the bit variables with the Modbus function codes (of type 'register') 3, 4, 6, 16,
23, the bit variables must be mirrored in the Register Area. The offsets for the mirrored bit
variables must be entered in the Properties/Offsets tab.

Example:

Register area offset / bit inputs: 1000
Register area offset / bit outputs: 1000
The variables mirrored from the Bit Area to the Register Area are located here starting with
Register Address 1000.

Mirrored Bit Variables Register.Bit
00_BIT_Area_WORD 1000.0
01_BIT_Area_SINT 1001.8
02_BIT_Area_SINT 1001.0
03_BIT_Area_REAL 1002.0
04_BIT_Area_BOOL 1004.8
05_BIT_Area_BOOL 1004.9
06_BIT_Area_BOOL 1004.10
07_BIT_Area_BOOL 1004.11
08_BIT_Area_BOOL 1004.12
09_BIT_Area_BOOL 1004.13
10_BIT_Area_BOOL 1004.14
11_BIT_Area_BOOL 1004.15
12_BIT_Area_BOOL 1004.0
13_BIT_Area_BOOL 1004.1
14_BIT_Area_BOOL 1004.2
15_BIT_Area_BOOL 1004.3
16_BIT_Area_BOOL 1004.4
17_BIT_Area_BOOL 1004.5
18_BIT_Area_BOOL 1004.6
19_BIT_Area_BOOL 1004.7
Table 197: Variables Mirrored from the Bit Area to the Register Area

HIMA Modbus Master Configuration of the Request Telegram
To read the variables 01_BIT_Area_SINT to 03_BIT_Area_REAL in the Modbus
master

1. Right-click TCP/UDP slaves, then click New.
2. From the list, select Read Holding Registers (3).
3. Right-click Read Holding Registers (3), then click Properties.

- Enter 1001 in the start address of the read area.
4. Right-click Read Holding Registers (3), then click Edit.
5. Drag the following variables from the Object Panel onto the Input Variables tab..
Mirrored Bit Variables Offset
01_BIT_Area_SINT 0
02_BIT_Area_SINT 1
03_BIT_Area_REAL 2

6. Right-click anywhere in the Output Variables area to open the context menu and click
New Offsets to renumber the variable offsets.

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 207 of 344

7.13 Control Panel (Modbus Slave)
The Control Panel can be used to verify and control the settings for the Modbus slave.
Details about the slave's current state (e.g., master state, etc.) are displayed.

To open the Control Panel for monitoring the Modbus Slave

1. In the structure tree, click Resource.
2. Click Online on the Action Bar.
3. In the System Log-in window, enter the access data to open the Control Panel for the

resource.
4. In the structure tree associated with the Control Panel, select Modbus Slave.

7.13.1 Context Menu (Modbus Slave)
The following command is available on the context menu for the selected Modbus slave:

Reset statistical data

Reset the statistical data (e.g., min./max. cycle time etc.) to 0.

7 Modbus Communication

Page 208 of 344 HI 801 101 E Rev. 3.00

7.13.2 View Box (Modbus Slave)
The view box displays the following values of the selected Modbus slave.

Element Description
Name Modbus slave name
CPU Load (planned) [%]
CPU Load (actual) [%]

See Chapter 7.10

Table 198: View Box of the Modbus Slave

7.13.3 View Box (Master Data)
The Master Data view box displays the following values.

Element Description
Name Name of master data
Interface Modbus capable interface on the COM module (RS485, Ethernet

UDP/TCP)
Requests Total number of master requests since the last counter reset.
Valid Requests Number of valid master requests since the last counter reset.
Invalid Requests Number of invalid master requests since the last counter reset.
Timeout [ms] Timeout within which the slave must receive at least one request

from the master.
If the slave receives no request within the timeout, the Master
Connection Status is set to not connected.

Connection State 0 = not monitored
Master Request Timeout is zero
1 = Not connected
2 = Connected

Table 199: Master Data View Box

Communication 7 Modbus

HI 801 101 E Rev. 3.00 Page 209 of 344

7.14 FBx LED Function in the Modbus Slave
The COM module indicates the state of the local Modbus slave protocol using one of the
LEDs assigned to the fieldbus interface. The states of these LEDs are specified in the
following table.

FBx LED Color Description
OFF Yellow The Modbus slave protocol is not active!

This means that the controller is in STOP or no Modbus master is
configured.

Blinking Yellow The Modbus Slave protocol is active and is exchanging data with the
Modbus master.

OFF Red PROFIBUS DP Slave protocols is not disturbed.
Blinking Red The Modbus Slave protocol is disturbed.

The following events result in a malfunction.
 Unknown function code received
 Request with incorrect addressing received
 Calculating time budget exceeded

If no faults occur for a period longer than 5 seconds, the state changes
to Protocol not disturbed.

Table 200: FBx LED in the MODBUS Slave

7.14.1 Error Codes of the Modbus TCP/IP Connection
The error codes of the Modbus TCP/IP connection are output in the Diagnosis dialog box.

Error Code Description
35 Operation is blocked
48 Port already in use
50 Network is down
53 Software caused connection abort
54 Peer caused connection abort
55 No buffer space available
60 Operation timed out, connection terminated
61 Connection refused (from peer)
65 No route to peer host

Table 201: Error Codes of Modbus TCP/IP

8 Send & Receive TCP Communication

Page 210 of 344 HI 801 101 E Rev. 3.00

8 Send & Receive TCP
S&R TCP is a manufacturer-independent, standard protocol for cyclic and acyclic data
exchange and does not use any specific protocols other than TCP/IP.

With the S&R TCP protocol, the HIMax controller supports almost every third-party system
as well as PCs with implemented socket interface to TCP/IP (for example Winsock.dll).

S&R TCP is compatible with the Siemens SEND/RECEIVE interface and ensures
communication with Siemens controllers via TCP/IP. Data is exchanged using the S7
function blocks AG_SEND (FC5) and AG_RECV (FC6).

8.1 System Requirements
Equipment and system requirements

Element Description
Controller HIMax with COM module

Processor
module

The Ethernet interfaces on the processor module may not be used for
S&R TCP.

COM module Ethernet 10/100BaseT
One S&R TCP protocol can be configured for each COM module.

Activation Software activation code required, see Chapter 3.5.

Table 202: Equipment and System Requirements for the S&R TCP

Properties of the S&R TCP protocol

Element Description
Safety-related No
Data Exchange Cyclic and acyclic data exchange via TCP/IP.
Function Blocks The S&R TCP function blocks must be used for acyclically

exchanging data.
TCP Connections Up to 32 TCP connections can be configured in one controller,

provided that the maximum size of transmission or received data is
not exceeded.

Max. size of
process data

A total of 128 kB of data can be transmitted and a total of 128 kB of
data can be received.

i
To determine the maximum amount of reference data, the
value for all status variables of the configured TCP
connections and TCP/SR function blocks must be
subtracted from the value for the maximum amount of send
data (128 bytes). The data can be freely allocated among
several TCP connections.

Table 203: S&R TCP Properties

8.1.1 Creating a S&R TCP Protocol

To create a new S&R TCP protocol

1. In the structure tree, open Configuration, Resource, Protocols.
2. On the context menu for protocols, click New, Send/Receive over TCP to add a new

S&R TCP protocol.
3. On the context menu for Send/Receive over TCP, click Properties. In the General tab,

select COM Module.

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 211 of 344

8.2 Example: S&R TCP Configuration

Figure 53: Connecting a HIMax and a Siemens Controller

In this example, the protocol Send/Receive over TCP is installed in a HIMax controller. The
HIMax is supposed to cyclically communicate via S&R TCP with a Siemens controller (e.g.,
SIMATIC 300).

In this example, HIMax (Client) is the active station that establishes the TCP connection to
the passive Siemens SIMATIC 300 (Server). Once the connection has been established,
both stations are equal and can send and receive data at any point in time.

When connecting the HIMax to the Siemens SIMATIC 300, the following points must be
taken into account:

The requirements described in chapter 8.1 System requirements apply for the HIMax.

HIMax and Siemens SIMATIC 300 are connected to one another via Ethernet interfaces.

HIMax and Siemens SIMATIC 300 must be located in the same subnet or must have the
corresponding routing settings if a router is used.

In this example, the HIMA controller is supposed to send two BYTES and one WORD to the
Siemens SIMATIC 300. The variables are received in the Siemens SIMATIC 300 by the
function block AG_RECV (FC 6) and are internally transmitted to the function block
AG_SEND (FC 5). Siemens SIMATIC 300 sends the variables (unchanged) back to the
HIMax controller using the function block AG_SEND (FC 5).

Once the configuration is completed, the user can verify the variable transmission using the
HIMA Force Editor.

8 Send & Receive TCP Communication

Page 212 of 344 HI 801 101 E Rev. 3.00

Figure 54: Data Transfer between a HIMax and a Siemens Controller

Description of the HIMax controller configuration

Element Description
TCP connection
[001]

This dialog box contains all parameters required for communicating
with the communication partner (Siemens SIMATIC 300).

Send data The variable offsets and types in the controller must be identical with
the variable addresses and types with data type UDT_1 in the
SIMATIC 300.

Receive data The variable offsets and types in the HIMax controller must be
identical with the variable addresses and types with data type UDT_1
in the SIMATIC 300.

Table 204: HIMax Controller Configuration

Description of the Siemens SIMATIC 300 Configuration

Element Description
Organization block
OB1

The function blocks AG_RECV (FC6) and AG_SEND (FC 5) must
be created and configured in the OB1 organization block.

AG_RECV (FC 6) The function block AG_RECV (FC 6) accepts the data received
from the communication partner with data type DB1.UDT_1.
The inputs ID and LADDR must be appropriately configured for
communication with the communication partner.

AG_SEND (FC 5) The function block AG_SEND (FC 5) transfers the data from data
type DB1.UDT_1 to the communication partner.
The inputs ID and LADDR must be appropriately configured for
communication with the communication partner.

Data block DB1 The data type UDT_1 is defined in the data block DB1.
Data type UDT_1 The addresses and types of the variables in SIMATIC 300 must be

identical with the offsets and types of the controller. The data type
UDT_1 accepts the received user data and stores them until they
are transmitted to the communication partner.

Table 205: Siemens SIMATIC 300 Configuration

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 213 of 344

 S&R TCP Configuration of the Siemens Controller SIMATIC 300

i
The following step by step instructions for configuring the Siemens controller are not to be
considered exhaustive.
This information is provided without guarantee (errors and omissions excepted); refer to the
Siemens documentation when developing projects with Siemens controllers.

To create the S&R TCP server in the SIMATIC 300 project

1. Start the SIMATIC manager.
2. In the SIMATIC manager, open the project associated with the SIMATIC 300 controller.
3. In this project, create and configure the Industrial Ethernet and the MPI connections.

To create the UDT1 data type using the following variables

1. Open the Function Blocks folder in the Siemens SIMATIC manager.
2. Select Add, S7 Block, Data Type from the main menu and create a data type.
3. Name the data type UDT1
4. Give the symbolic name UDT_1 to the data type.
5. In data type UDT_1, create the three InOut_x variables as described in the figure

below.

I

Figure 55: List of Variables in the Siemens UDT1 Block

i
During cyclic and acyclic data exchange, note that some controllers (e.g., SIMATIC 300)
add so-called pad bytes. Pad bytes ensure that all data types greater than one byte always
begin at an even offset and that also the total size of the defined variables is even.
In such a case, dummy bytes must be used on the correct place of the HIMax controller
(see Chapter 8.6 Third-Party Systems with Pad Bytes).

8 Send & Receive TCP Communication

Page 214 of 344 HI 801 101 E Rev. 3.00

 To create the DB1 data block for the FC 5 and FC 6 function blocks

1. Select Add, S7 Function Block, Data Block on the main menu and create a data
block.

2. Enter the name DB1 for the data block.
3. Enter the symbolic name DB1 for the data block.
4. Assign the UDT_1 data type to the DB1 data block.
5. In the DB1 data block, configure the data types such as described in the figure below.

Figure 56: List of Variables in the Siemens DB1 Function Block

To create the following symbols in the Symbol Editor

1. Double click the OB1 organization block to open the KOP/AWL/FUP dialog box.
2. Open the Symbol Editor on the main menu Extras, Symbol Table.
3. Add the variables M 1.0...MW 5 in the Symbol Editor such as specified in the figure

below.

Figure 57: SIMATIC Symbol Editor

To create the AG_RECV (FC 6) function block

1. Open the KOP/AWL/FUP dialog box.
2. From the structure tree located on the left side of the Symatic Manager,

select the following function blocks in the given order:
one OR gate
one S_VIMP
one AG_RECV (FC 6)

3. Drag these function blocks onto the OB1 organization block.

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 215 of 344

4. Connect and configure the function blocks as described in the figure below.
5. Right-click the AG_RECV (FC 6) function block, and then click Properties.
6. Deactivate Active Connection Setup and configure the ports.
7. Note the LADDR function block parameter down and enter it in the function chart on the

AG_RECV (FC 6) function block.

Figure 58: Receive Function Chart

8 Send & Receive TCP Communication

Page 216 of 344 HI 801 101 E Rev. 3.00

To create the AG_SEND (FC 5) function block

1. Open the KOP/AWL/FUP dialog box.
2. From the structure tree located on the left side of the Symatic Manager,

select the following function blocks in the given order:
one OR gate
one S_VIMP
one AG_SEND (FC 5)

3. Drag these function blocks onto the OB1 organization block.
4. Connect and configure the function blocks as described in the figure below.
5. Right-click the AG_SEND (FC 5) function block, and then click Properties.
6. Deactivate Active Connection Setup and configure the ports.
7. Note the LADDR function block parameter down and enter it in the function chart on the

AG_SEND (FC 5) function block.

Figure 59: Send Function Chart

To load the code into the SIMATIC 300 controller

1. Start the Code Generator for the program.
2. Make sure that the code was generated without error.
3. Load the code into the SIMATIC 300 controller.

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 217 of 344

8.2.1 S&R TCP Configuration of the HIMax Controller
For more information on how to configure the HIMax controllers and use the SILworX
programming tool, refer to the manual "First Steps in SILworX".

To create the following global variables in the Variable Editor

1. In the structure tree, open Configuration, Global Variables.
2. Right-click the Global Variables, and then click Edit.
3. Create the global variables as described in Table 206.
Name Type
Siemens_HIMA1 Byte
Siemens_HIMA2 Byte
Siemens_HIMA3 WORD
HIMA_Siemens1 Byte
HIMA_Siemens2 Byte
HIMA_Siemens3 WORD
Table 206: Global Variables

To create the S&R TCP protocol in the resource

1. In the structure tree, open Configuration, Resource.
2. Right-click Protocols, then click New.
3. Select Send/Receive over TCP and enter a name for the protocol.
4. Click OK to create a new protocol.
5. Right-click Send/Receive over TCP, then click Properties.
6. Click COM Module. The remaining parameters retain the default values.

To create the TCP connection

1. Right-click Send/Receive over TCP, then click New.
2. Right-click TCP Connection, then click Properties.
3. Configure the properties such as specified in the figure.

Figure 60: TCP Connection Properties in SILworX

i
If parameters for cyclic data exchange between two controllers should be set, the option
Cyclic data transfer must be activated in the Properties dialog box for the TCP Connection.

8 Send & Receive TCP Communication

Page 218 of 344 HI 801 101 E Rev. 3.00

To configure the receive data of the HIMax controller
1. Right-click TCP Connection, then click Edit.
2. Select the Process Variables tab.
3. Drag the following global variables from the Object Panel onto the Input Signals area.
Global Variable Type
Siemens_HIMA1 Byte
Siemens_HIMA2 Byte
Siemens_HIMA3 WORD

Table 207: Variables for Receive Data

4. Right-click anywhere in the Register Inputs area, and then click New Offsets to
renumber the variable offsets.

i
Take into account that the variable offsets in the HIMax controller must be identical with the
variable addresses with UDT_1 data type in the SIMATIC 300.

To configure the send data of the HIMax controller

1. Right-click TCP Connection, then click Edit.
2. Select the Process Variables tab.
3. Drag the following global variables from the Object Panel onto the Input Signals area.
Global Variable Type
HIMA_Siemens1 Byte
HIMA_Siemens2 Byte
HIMA_Siemens3 WORD

Table 208: Variables for Send Data

4. Right-click anywhere in the Register Inputs area, and then click New Offsets to
renumber the variable offsets.

i
Take into account that the variable offsets in the HIMax controller must be identical with the
variable addresses with UDT_1 data type in the SIMATIC 300.

To verify the S&R TCP configuration

1. In the structure tree, open Configuration, Resource, Protocols, Send/Receive
Protocol over TCP.

2. Click the Verification button on Action Bar, and then click OK to confirm the action.
3. Thoroughly verify the messages contained in the Status Viewer and correct potential
errors.

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 219 of 344

8.3 TCP S&R Protocols Menu Functions

8.3.1 Edit
The Edit dialog box for the S&R TCP protocol contains the following tab:

System Variables
The system variables are used to evaluate the state of the TCP Send Receive Protocol
from within the user program.

Element Description
Active Connection
Count

System variable providing the number of active (not disturbed)
connections.

Disturbed
Connection Count

System variable providing the number of disturbed connections.
Disturbed means that the TCP connection was interrupted due to a
timeout or an error.

Status No function

Table 209: System Variables S&R TCP

8.3.2 Properties
Over a TCP connection, data is exchanged cyclically or acyclically. The S&R TCP function
blocks are required for the acyclic data exchange.

On a connection, data cannot be simultaneously exchanged cyclically and acyclically.

General
Name Description
Type Send/Receive over TCP
Name Name for the current Send/Receive over TCP Protocol. A maximum of

31 characters.
Module Selection of the COM module within which the protocol is processed.
Use Max CPU
Load

Activated:
Use CPU load limit from the Max. CPU Load [%] field.

Deactivated:
Do not use the CPU Load limit for this protocol.

Max. CPU Load
[%]

Maximum CPU load of module that can be used for processing the
protocols.

Range of values: 1...100%
Default value: 30%

Table 210: S&R TCP General Properties

8 Send & Receive TCP Communication

Page 220 of 344 HI 801 101 E Rev. 3.00

CPU/COM
The default values of the parameters provide the fastest possible data exchange of S&R
TCP data between the COM module (COM) and the processor module (CPU) within the
controller. These parameters should only be changed if it is necessary to reduce the COM
and CPU loads for an application, and the process allows this change.

i
Only experienced programmers should modify the parameters. Increasing the COM and
CPU refresh rate means that the effective refresh rate of the S&R TCP data is also
increased. The system time requirements must be verified.

Name Description
Refresh Rate [ms] Refresh rate in milliseconds at which the COM and CPU exchange

S&R TCP protocol data. If the Refresh Rate is zero or lower than the
cycle time for the controller, data is exchanged as fast as possible.
Range of values: 0...(231-1), Default value: 0

Within one cycle Activated:
Transfer of the S&R TCP data from the CPU to the COM within a
CPU cycle.

Deactivated:
Transfer of the S&R TCP data from the CPU to the COM, distributed
over multiple CPU cycles, each with 1100 bytes per data direction.

Table 211: Parameters of COM/CPU

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 221 of 344

8.4 Menu Functions for TCP Connection

8.4.1 Edit
The Edit menu function opens the tabs Process Variables and System Variables.

Process Variables
Input Signals

The Input Signals area contains the variables for cyclic data exchange that this controller
should receive.

Any variables can be created in the Input Signals tab. Offsets and types of the received
variables must be identical with offsets and types of the transmitted variables (send data) of
the communication partner.

Output Signals

The variables for cyclic data exchange sent by this controller are entered in the Output
Signals area.

Any variables can be created in the Output Signals tab. Offsets and types of the received
variables must be identical with offsets and types of the transmitted variables (receive data)
of the communication partner.

8.4.2 System Variables
Using the variables in the System Variables tab, the state of the TCP connection can be
assessed from within the user program.

Name Description
Bytes received Number of bytes received so far.
Bytes sent Number of bytes sent so far.
Error Code Error code of the TCP connection.

See Chapter 8.8.4.
Error Code Timestamp [ms] Millisecond fraction of the timestamp.

Time point when the error occurred.
Error Code Timestamp [s] Second fraction of the timestamp.

Time point when the error occurred.
Partner Request Timeout With acyclic data transfer: Timeout within which the

communication partner must receive at least one time data
after data sending.

0=Off
1 ... 232-1 [ms]

Partner Connection State If no data is received within the timeout, 'Partner connection
state' is set to not connected and the connection is
restarted.

0=No connection
1=Connection OK

Status TCP connection status.
(see Chapter 8.8.6)

Table 212: System Variables

8 Send & Receive TCP Communication

Page 222 of 344 HI 801 101 E Rev. 3.00

8.4.3 Properties
Over a TCP connection, data is exchanged cyclically or acyclically. The S&R TCP function
blocks are required for the acyclic data exchange. The S&R TCP function blocks cannot be
used for cyclic data exchange.

Name Description
Type TCP connection
Name Any unique name for one TCP connection. A maximum of 31

characters.
ID Any unique identification number (ID) for each TCP connection.

The ID is also required as a reference for the S&R TCP function
blocks.
Range of values: 0..255
Default value: 0
Server (default value):
This station operates as a server (passive mode). The connection
is established by the communication partner (client). Once the
connection has been established, both communication partners
are equal and can send data at any time.
The own port must be specified.
Server with defined partner:
This station operates as a server (passive mode). The connection
is established by the communication partner (client). Once the
connection has been established, both communication partners
are equal and can send data at any time.
If the IP address and/or port of the communication partner are
defined here, only the specified communication partner can
connect to the server. All other stations are ignored.
If one of the parameters (IP address or port) is set to zero, the
parameter is not verified.

Mode

Client:
This station operates as a client, i.e., the station establishes the
connection to the communication partner.
IP address and port of the communication partner must be
specified.
Also an own port can optionally be defined.

Partner
IP Address

IP address of the communication partner.
0.0.0.0: any IP address is permitted.
Valid range: 1.0.0.0 ... 223.255.255.255,
except for: 127.x.x.x
Default value: 0

Partner port Port of the communication partner.
Zero: Any port
Ports that are reserved or already used (1...1024), are rejected by
the COM OS.
Range of values: 0..65535
Default value: 0

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 223 of 344

Own Port Own port.
Zero means any port.
Ports that are reserved or already used (1 up to 1024), are
rejected by the COM OS.
Range of values: 0..65535
Default value: 0
Deactivated (default value)
Cyclic data transfer is deactivated.
Function blocks must be used to program the data
exchange over this TCP connection.
No cyclic E/A data may be defined on this connection.

Cyclic data transfer

Activated:
Cyclic data transfer is active.
Data is defined in the Process Variable dialog box for the
TCP connection.
Receive data must be defined.
No function blocks can be used on this connection.

Send Interval [ms] Only editable with cyclic data transfer.
The send interval is set here.
Range of values 10...2147483647 ms (lower values are
rounded to 10 ms)
Default value: 0

Keep Alive Interval [s] Time period until the connection monitoring provided by the
TCP is activated.
Zero deactivates the connection monitoring.
If no data is exchanged within the specified KeepAlive
interval, the KeepAlive samples are sent to the
communication partner. If the connection still exists, the
KeepAlive samples are acknowledged by the
communication partner.
If no data is exchanged between the partners within a period
of > 10 KeepAlive interval, the connection is closed.
If no response is received after a data packet sending, the
data packet is resent in predefined intervals. The connection
is aborted after 12 unsuccessful resends (approx. 7
minutes).
Range of values 1...65535s
Default value: 0 = deactivated

Partner Request Timeout
[ms]

With acyclic data transfer: Timeout within which the
communication partner must receive at least one time data
after data sending. If no data is received within the timeout,
Partner connection state is set to not connected and the
connection is restarted.
After a timeout or another error closed the connection, the
active side re-establishes the connection with a delay of 10
x PartnerRequestTimeout or a delay of 10 seconds if
PartnerRequestTimeout is equal to 0. The passive side
opens the port within half of this time.
0=Off
Range of values 1...232-1 [ms]
Default value: 0

Table 213: S&R TCP Connection Properties

8.5 Data Exchange
S&R TCP operates according to the client/server principle. The connection is established
by the communication partner which is configured as a client. Once the connection has

8 Send & Receive TCP Communication

Page 224 of 344 HI 801 101 E Rev. 3.00

been established, both communication partners are equal and can send data at any point in
time.

S&R TCP does not have its own data protection protocol; rather, it uses TCP/IP directly. As
the data sent by the TCP are arranged in a "data stream", it must be ensured that offsets
and types of the variables to be exchanged on the receiving station are identical with the
ones on the sending station.

S&R TCP is compatible with the Siemens SEND/RECEIVE interface and allows cyclical
data exchange with the Siemens S7 function blocks AG_SEND (FC5) and AG_RECV
(FC6) (see Chapter 8.2, Example of S&R TCP Configuration).

Further, HIMA provides five S&R TCP function blocks for controlling and individually
configuring communication using the user program. With the S&R TCP function blocks, any
arbitrary protocol transferred over TCP (e.g., Modbus) can be sent and received.

8.5.1 TCP Connections
For each connection to a communication partner over S&R TCP, at least one TCP
connection must exist in the HIMax controller.

The identification number of the TCP connection and the addresses/ports of the own
controller and of the communication partner's controller must be set in the Properties dialog
box for the TCP connection.

A maximum of 32 TCP connections can be established in a HIMax controller.

These TCP connections must have different identification numbers and different
addresses/ports.

To create a new TCP connection

1. In the structure tree, open Configuration, Resource.
2. Right-click Protocols, then click New.
3. Select Send/Receive over TCP and enter a name for the protocol.
4. Click OK to create a new protocol.
5. Right-click Send/Receive over TCP, then click Properties.
6. Click COM Module. The remaining parameters retain the default values.

TIP The HIMax controller and the third-party system must be located in the same subnet or
must have the corresponding routing settings if a router is used.

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 225 of 344

8.5.2 Cyclic Data Exchange
If data is exchanged cyclically, a send interval must be defined in the HIMax controller and
in the communication partner.

The send interval defines the cyclic time period within which the sending communication
partner sends the variables to the receiving communication partner.

 To ensure a continuous data exchange, both communication partners should define
almost the same send interval (see Chapter 8.5.5, Flow Control).

 For cyclic data exchange, the Cyclic Data Transfer option must be activated in the TCP
connection in use.

 If the Cyclic Data Transfer option is activated in a TCP connection, no function blocks
may be used.

 The variables to be sent and received are assigned in the Process Variable dialog box
for the TCP connection. Receive data must exist, send data is optional.

i
The same variables (same offsets and types) that are defined as send data in a station,
must be defined as receive data in the other station.

8.5.3 Acyclic Data Exchange with Function Blocks
In HIMax controllers, the acyclic data exchange is controlled by the user program over the
TCP S&R function blocks.
Data exchange can thus be controlled using a timer or a mechanical switch connected to a
physical input of the HIMax controller.

 The Cyclic Data Transfer option must be deactivated in the TCP connection in use.
 Only one S&R TCP function block may send at any given time.
 The variables to be sent or received are assigned in the Process Variables dialog box

for the S&R TCP function blocks (all except for Reset).

i
The same variables (same offsets and types) that are defined as send data in a station,
must be defined as receive data in the other station.

8.5.4 Simultaneous Cyclic and Acyclic Data Exchange
For this purpose, one TCP connection must be configured for cyclic data and one TCP
connection for acyclic data. The two TCP connections must use different partner IP
addresses and partner ports.

One individual TCP connection cannot be simultaneously used for cyclic and acyclic data
exchange.

8.5.5 Flow Control
The flow control is a component of the TCP and monitors the continuous data traffic
between two communication partners.

With cyclic data transfer, at least one packet must be received after a maximum of 3 to 5
packets have been sent; otherwise, transmission is blocked until a packet is received or the
connection monitoring process terminates the connection.

8 Send & Receive TCP Communication

Page 226 of 344 HI 801 101 E Rev. 3.00

The number (3...5) of potential transmissions without packet reception depends on the size
of the packets to be sent.

Number=5 for small packets < 4kB.

Number=3 for big packets ≥ 4kB.

 While planning the project, it must be ensured that no station sends more data than the
other station can simultaneously process.

 To ensure a cyclical data exchange, both communication partners should define almost
the same send interval

8.6 Third-Party Systems with Pad Bytes
During cyclic and acyclic data exchange, note that some controllers (e.g., SIMATIC 300)
add so-called pad bytes. Pad bytes ensure that all data types exceeding one byte always
begin at an even offset and that the total size of the packets (in bytes) is also even.

In the HIMax controller, dummy bytes must be added in place of pad bytes in the
corresponding positions.

Figure 61: Siemens List of Variables

In the Siemens controller, a pad byte is added (not visible) such that the InOut_3 variable
begins at an even offset.

Figure 62: HIMax List of Variables

In the HIMax controller, a dummy byte must be added such that the InOut_3 variable has
the same offset as in the Siemens controller.

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 227 of 344

8.7 S&R TCP Function Blocks
If the cyclic data transfer is not sufficient flexible, data can also be sent and received using
the S&R TCP function blocks. The Cyclic Data Transfer option must be deactivated in the
TCP connection in use.

The S&R TCP function blocks is used to tailor the data transfer over TCP/IP to best meet
the project requirements.

The function blocks are configured in the user program. The functions (Send, Receive,
Reset) of the HIMatrix controller can thus be set and evaluated in the user program.

S&R TCP function blocks are required for the acyclic data exchange. These function blocks
are not required for the cyclic data exchange between server and client.

i
The configuration of the S&R TCP function blocks is described in Chapter 12.

The following function blocks are available:

Function block Function Description
TCP_Reset
(see Chapter 8.7.1)

TCP connection reset

TCP_Send
(see Chapter 8.7.2)

Sending of data

TCP_Receive
(see Chapter 8.7.3)

Reception of data packets with fixed length

TCP_ReceiveLine
(see Chapter 8.7.4)

Reception of an ASCII line

TCP_ReceiveVar
(see Chapter 8.7.5)

Reception of data packets with variable length (with length field)

LATCH Only used within other function blocks
PIG Only used within other function blocks
PIGII Only used within other function blocks

Table 214: Function Blocks for S&R TCP Connections

8 Send & Receive TCP Communication

Page 228 of 344 HI 801 101 E Rev. 3.00

8.7.1 TCP_Reset

Figure 63: Function Block TCP_Reset

The TCP Reset function block is used to re-establish a disturbed connection if a send or
receive function block reports a timeout error (16#8A).

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs and Outputs of the Function Block with Prefix A:

These inputs and outputs can be used to control and evaluate the function blocks using the
user program. The prefix "A" means "Application".

A-Inputs Description Type
A_Req Rising edge starts the function block BOOL
A_Id Identification number (ID) of the disturbed TCP connection to

be reset.
INT

Table 215: A-Inputs for the TCP_Reset Function Block

A_Outputs Description Type
A_Busy TRUE: The TCP connection is still being reset. BOOL
DONE TRUE: The data transmission ended without error. BOOL
A_Status The status and error code of the function block and of the TCP

connection are output on A_Status.
DWORD

Table 216: A-Outputs for the TCP_Reset Function Block

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 229 of 344

Inputs and Outputs of the Function Block with Prefix F:

These inputs and outputs of the function block establish the connection to the Reset
function block in structure tree. The prefix "F" means "Field".

i
Common variables are used to connect the Reset function block (in the Function Blocks
folder) to the TCP_Reset function block (in the user program). These must be created
beforehand using the Variable Editor.

Connect the F-Inputs of the TCP_Reset function block in the user program to the same
variables that will be connected to the outputs of the Reset function block in the structure
tree.

F-Inputs Type
F_Ack BOOL
F_Busy BOOL
F_Done BOOL
F_Status DWORD

Table 217: F-Inputs for the TCP_Reset Function Block

Connect the F-Outputs of the TCP_Reset function block in the user program to the same
variables that will be connected to the inputs of the Reset function block in the structure
tree.

F-Outputs Type
F_Req BOOL
F_Id DWORD

Table 218: F-Outputs for the TCP_Reset Function Block

To create the Reset function block in the structure tree:

1. In the structure tree, open Configuration, Resource, Protocols, Send/Receive over
TCP, Function Blocks, New.

2. Select the Reset function block and click OK.
3. Right-click the Reset function block, and then click Edit.

 The window for assigning variables to the function blocks appears.

Connect the inputs of the Reset function block in the structure tree to the same variables
that have been previously connected to the F-Outputs of the TCP_Reset function block in
the user program.

Inputs Type
ID DWORD
REQ BOOL

Table 219: Input System Variables

8 Send & Receive TCP Communication

Page 230 of 344 HI 801 101 E Rev. 3.00

Connect the following outputs of the Reset function block in the structure tree to the same
variables that have been previously connected to the F-Inputs of the TCP_Reset function
block in the user program.

Outputs Type
ACK BOOL
BUSY BOOL
DONE BOOL
STATUS DWORD

Table 220: Output System Variables

To operate the TCP_Reset function block, the following steps are essential:

1. In the user program, set the identification number for the disturbed TCP connection on
the A_ID input.

2. In the user program, set the A_Req input to TRUE.

i
The function block reacts to a rising edge on A_Req.

The A_Busy output is set to TRUE until a reset is sent to the specified TCP connection.
Afterwards, A_Busy is set to FALSE and A_Done is set to TRUE.

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 231 of 344

8.7.2 TCP_Send

Figure 64: Function Block TCP_Send

The TCP_Send function block is used for acyclically send variables to a communication
partner. A function block with the same variables and offsets, e.g., Receive, must be
configured in the communication partner.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs and Outputs of the Function Block with Prefix A:

These inputs and outputs can be used to control and evaluate the function blocks using the
user program. The prefix "A" means "Application".

A-Inputs Description Type
A_Req The rising edge starts the function block. BOOL
A_Id Identification number of the configured TCP connection to the

communication partner to which data should be sent.
INT

A_Len Number of transmitted variables, expressed in bytes.
A_Len must be greater than zero and must not end within a
variable.

INT

Table 221: A-Inputs for the TCP_Send Function Block

A_Outputs Description Type
A_Busy TRUE: Data is still being transmitted. BOOL
DONE TRUE: The data transmission ended without error. BOOL
ERROR TRUE: An error occurred

FALSE: No error
BOOL

A_Status The status and error code of the function block and of the TCP
connection are output on A_Status.

DWORD

Table 222: A-Outputs for the TCP_Send Function Block

8 Send & Receive TCP Communication

Page 232 of 344 HI 801 101 E Rev. 3.00

Inputs and Outputs of the Function Block with Prefix F:

These inputs and outputs of the function block establish the connection to the Send
function block in structure tree. The prefix "F" means "Field".

i
Common variables are used to connect the Send function block (in the Function Blocks
folder) to the TCP_Send function block (in the user program). These must be created
beforehand using the Variable Editor.

Connect the F-Inputs of the TCP_Send function block in the user program to the same
variables that will be connected to the outputs of the Send function block in the structure
tree.

F-Inputs Type
F_Ack BOOL
F_Busy BOOL
F_Done BOOL
F_Error BOOL
F_Status DWORD

Table 223: F-Inputs for the TCP_Send Function Block

Connect the F-Outputs of the TCP_Send function block in the user program to the same
variables that will be connected to the inputs of the Send function block in the structure
tree.

F-Outputs Type
F_Id DWORD
F_Len INT
F_Req BOOL

Table 224: F-Outputs for the TCP_Send Function Block

To create the Send function block in the structure tree

1. In the structure tree, open Configuration, Resource, Protocols, Send/Receive over
TCP, Function Blocks, New.

2. Select the Send function block and click OK.
3. Right-click the Send function block, and then click Edit.

 The window for assigning variables to the function blocks appears.

Connect the inputs of the Send function block in the structure tree to the same variables
that have been previously connected to the F-Outputs of the TCP_Send function block in
the user program.

Inputs Type
ID DWORD
LEN INT
REQ BOOL

Table 225: Input System Variables

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 233 of 344

Connect the following outputs of the Send function block in the structure tree to the same
variables that have been previously connected to the F-Inputs of the TCP_Send function
block in the user program.

Outputs Type
Ack BOOL
Busy BOOL
Done BOOL
ERROR BOOL
STATUS DWORD

Table 226: Output System Variables

Data Description
Send Data Any variables can be created in the Process Variables tab. Offsets and

types of the received variables must be identical with offsets and types
of the transmitted variables of the communication partner.

Table 227: Send Data

To operate the TCP_Send function block, the following steps are essential:

i
The send variables must be created in the Process Variables tab of the Send dialog box.
Offsets and types of the received variables must be identical with offsets and types of the
transmitted variables of the communication partner.

1. In the user program, set the identification number of the TCP connection on the A_ID

input.
2. In the user program, set the expected length (in bytes) of the variables to be sent on the

A_Len input.
3. In the user program, set the A_Req input to TRUE.

i
The function block reacts to a rising edge on A_Req.

The A_Busy output is set to TRUE until the variables have been sent. Afterwards, A_Busy
is set to FALSE and A_Done is set to TRUE.

If the sending process was not successful, the A_Error output is set to TRUE and an error
code is output on A_Status.

8 Send & Receive TCP Communication

Page 234 of 344 HI 801 101 E Rev. 3.00

8.7.3 TCP_Receive

Figure 65: Function Block TCP_Receive

The TCP_Receive function block is used to receive predefined variables from the
communication partner.

A function block with the same variables and offsets, e.g., TCP_Send, must be configured
in the communication partner.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs and Outputs of the Function Block with Prefix A:

These inputs and outputs can be used to control and evaluate the function blocks using the
user program. The prefix "A" means "Application".

A-Inputs Description Type
A_Req The rising edge starts the function block. BOOL
A_Id Identification number of the configured TCP connection to the

communication partner from which data should be received.
INT

A_Tmo Receive timeout
If no data are received within the timeout, the function block
stops and an error message appears. If the A_Tmo input is not
used or set to zero, the timeout is deactivated.

TIME

A_RLen A_RLen is the expected length of the variables to be received,
expressed in bytes.
A_RLen must be greater than zero and must not end within a
variable.

INT

Table 228: A-Inputs for the TCP_Receive Function Block

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 235 of 344

A_Outputs Description Type
A_Busy TRUE: Data is still being received. BOOL
A_Valid TRUE: The data reception ended without error. BOOL
ERROR TRUE: An error occurred

FALSE: No error
BOOL

A_Status The status and error code of the function block and of the TCP
connection are output on A_Status.

DWOR
D

A_Len Number of received bytes. INT

Table 229: A-Outputs for the TCP_Receive Function Block

Inputs and Outputs of the Function Block with Prefix F:

These inputs and outputs of the function block establish the connection to the Receive
function block in structure tree. The prefix "F" means "Field".

i
Common variables are used to connect the Receive function block (in the Function Blocks
folder) to the TCP_Receive function block (in the user program). These must be created
beforehand using the Variable Editor.

Connect the F-Inputs of the TCP_Receive function block in the user program to the same
variables that will be connected to the outputs of the Receive function block in the structure
tree.

F-Inputs Type
F_Ack BOOL
F_Busy BOOL
F_Valid BOOL
F_Error BOOL
F_Status DWORD
F_Len INT

Table 230: A-Inputs for the TCP_Receive Function Block

Connect the F-Outputs of the TCP_Receive function block in the user program to the same
variables that will be connected to the inputs of the Receive function block in the structure
tree.

F-Outputs Type
F_Req BOOL
F_Id DWORD
F_Tmo INT
F_RLen INT

Table 231: F-Outputs for the TCP_Receive Function Block

8 Send & Receive TCP Communication

Page 236 of 344 HI 801 101 E Rev. 3.00

To create the corresponding Receive function block in the structure tree:

1. In the structure tree, open Configuration, Resource, Protocols, Send/Receive over
TCP, Function Blocks, New.

2. Select the Receive function block and click OK.
3. Right-click the Receive function block, and then click Edit.

 The window for assigning variables to the function blocks appears.

Connect the inputs of the Receive function block in the structure tree to the same variables
that have been previously connected to the F-Outputs of the TCP_Receive function block
in the user program.

Inputs Type
ID INT
REQ BOOL
RLEN INT
TIMEOUT TIME

Table 232: Input System Variables

Connect the following outputs of the Receive function block in the structure tree to the
same variables that have been previously connected to the F-Inputs of the TCP_Receive
function block in the user program.

Outputs Type
Ack BOOL
Busy BOOL
ERROR BOOL
LEN INT
STATUS DWORD
VALID BOOL

Table 233: Output System Variables

Data Description
Receive variables Any variables can be created in the Process Variables tab. Offsets

and types of the received variables must be identical with offsets
and types of the transmitted variables of the communication partner.

Table 234: Receive Variables

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 237 of 344

To operate the TCP_Receive function block, the following steps are essential:

i
The receive variables must be created in the Process Variables tab located in the Receive
dialog box. Offsets and types of the receive variables must be identical with offsets and
types of the send variables of the communication partner.

1. In the user program, set the identification number for the TCP connection on the A_ID
input.

2. In the user program, set the receive timeout on the A_Tmo input.
3. In the user program, set the expected length of the variables to be received on the

A_RLen input.
4. In the user program, set the A_Req input to TRUE.

i
The function block starts with a rising edge on A_Req.

The A_Busy output is set to TRUE until the variables have been received or the receive
timeout has expired. Afterwards, A_Busy is set to FALSE and A_Valid or A_Error to TRUE.

If no error occurred during the variable reception, the A_Valid output is set to TRUE. The
variables defined in the Data tab can be evaluated.

If an error occurred during the variable reception, the A_Error output is set to TRUE and an
error is output on A_Status.

8 Send & Receive TCP Communication

Page 238 of 344 HI 801 101 E Rev. 3.00

8.7.4 TCP_ReceiveLine

Figure 66: Function Block TCP_ReceiveLine

The TCP_ReceiveLine function block is used for receiving an ASCII character string with
LineFeed (16#0A) from a communication partner.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Inputs and Outputs of the Function Block with Prefix A:

These inputs and outputs can be used to control and evaluate the function blocks using the
user program. The prefix "A" means "Application".

A-Inputs Description Type
A_Req Rising edge starts the function block. BOOL
A_Id Identification number of the configured TCP connection to the

communication partner from which data should be received.
INT

A_Tmo Receive timeout
If no data are received within the timeout, the function block
stops and an error message appears. If the input is not used
or set to zero, the timeout is deactivated.

TIME

A_MLen Maximum length of a line to be received, expressed in bytes.
The receive variables must created in the Data tab located in
the COM function block.
Transmitted bytes = Min (A_MLen, line length, length of the
data range).

INT

Table 235: A-Inputs for the TCP_ReceiveLine Function Block

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 239 of 344

A_Outputs Description Type
A_Busy TRUE: Data is still being received. BOOL
A_Valid TRUE: The data reception ended without error. BOOL
ERROR TRUE: An error occurred

FALSE: No error
BOOL

A_Status The status and error code of the function block and of the TCP
connection are output on A_Status.

DWORD

A_Len Number of received bytes. INT

Table 236: A-Outputs for the TCP_ReceiveLine Function Block

Inputs and Outputs of the Function Block with Prefix F:

These inputs and outputs of the function block establish the connection to the ReceiveLine
function block in structure tree. The prefix "F" means "Field".

i
Common variables are used to connect the ReceiveLine function block in the structure tree
(located in the Function Blocks folder) to the TCP_ReceiveLine function block (in the user
program). These must be created beforehand using the Variable Editor.

Connect the F-Inputs of the TCP_ReceiveLine function block in the user program to the
same variables that will be connected to the outputs of the ReceiveLine function block in
the structure tree.

F-Inputs Type
F_Ack BOOL
F_Busy BOOL
F_Valid BOOL
F_Error BOOL
F_Status DWORD
F_Len INT

Table 237: F-Inputs for the TCP_ReceiveLine Function Block

Connect the F-Outputs of the TCP_ReceiveLine function block in the user program to the
same variables that will be connected to the inputs of the ReceiveLine function block in the
structure tree.

F-Outputs Type
A_Req BOOL
A_Id INT
A_Tmo TIME
A_MLen INT

Table 238: A-Outputs for the TCP_ReceiveLine Function Block

8 Send & Receive TCP Communication

Page 240 of 344 HI 801 101 E Rev. 3.00

To create the corresponding ReceiveLine function block in the structure tree

1. In the structure tree, open Configuration, Resource, Protocols, Send/Receive over
TCP, Function Blocks, New.

2. Select the ReceiveLine function block and click OK.
3. Right-click the ReceiveLine function block, and then click Edit.

 The window for assigning variables to the function blocks appears.

Connect the inputs of the ReceiveLine function block in the structure tree to the same
variables that have been previously connected to the F-Outputs of the TCP_ReceiveLine
function block in the user program.

Inputs Type
ID INT
MLEN INT
REQ BOOL
TIMEOUT TIME

Table 239: Input System Variables

Connect the following outputs of the ReceiveLine function block in the structure tree to the
same variables that have been previously connected to the F-Inputs of the
TCP_ReceiveLine function block in the user program.

Outputs Type
ACK BOOL
BUSY BOOL
ERROR BOOL
LEN INT
STATUS DWORD
VALID BOOL

Table 240: Output System Variables

Data Description
Receive variables The Process Variables tab should only contain variables of type

BYTE. Offsets of the variables must be identical with offsets of the
variables of the communication partner.

Table 241: Receive Variables

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 241 of 344

To operate the TCP_ReceiveLine function block, the following steps are essential:

i
The receive variables of type BYTE must be created in the tab Process Variables located in
the ReceiveLine dialog box. Offsets of the receive variables must be identical with offsets of
the send variables of the communication partner.

1. In the user program, set the identification number for the TCP connection on the A_ID

input.
2. In the user program, set the receive timeout on the A_Tmo input.
3. In the user program, set the maximum length of the line to be received on the A_MLen

input.

i
A_Mlen must be greater than zero and determines the size of the receive buffer in bytes.
If the receive buffer is full and a line end has not yet occurred, the reading process ends
and no error message appears.
The number of received bytes is output on the A_Len output:
Received bytes = Min (A_MLen, line length, length of the data range).

4. In the user program, set the A_Req input to TRUE.

i
The function block reacts to a rising edge on A_Req.

The A_Busy output is set to TRUE if the receive buffer is full or the end of line LineFeed is
received or the receive time-put has expired. Afterwards, A_Busy is set to FALSE and
A_Valid or A_Error to TRUE.

If no error occurred during the line reception, the A_Valid output is set to TRUE. The
variables defined in the Data tab can be evaluated.

If an error occurred during the line reception, the A_Error output is set to TRUE and an
error is output on A_Status.

8 Send & Receive TCP Communication

Page 242 of 344 HI 801 101 E Rev. 3.00

8.7.5 TCP_ReceiveVar

Figure 67: Function Block TCP_ReceiveVar

The TCP_ReceiveVar function block is used to evaluate data packets with variable length
and containing a length field.

i
To configure the function block, drag it from the function block library onto the user program
(see also Chapter 12).

Function Description

The received data packets must have the structure represented in the figure below (e.g.,
Modbus protocol). Modifying the input parameters A_LfPos, A_LfLen, A_LfFac, A_LfLen,
the received data packets can be adapt to any protocol format.

The received data packet is composed of a header and a data range. The header contains
data such as participant address, telegram function, length field etc. required for
establishing communication. To evaluate the data range, separate the header and read the
length field.

The size of the header is entered in the A_LfAdd parameter.

The length of the data range must be read from the length field of the data packet currently
read. The position of the length field is entered in A_LfPos. The size of the length field
expressed in bytes is entered in LfLen. If the length is not expressed in bytes, the
corresponding conversion factor must be entered in A_LfFac (e.g., 2 for WORD or 4 for
DOUBLE WORD).

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 243 of 344

Figure 68: Data Packet Structure

Inputs and Outputs of the Function Block with Prefix A

These inputs and outputs can be used to control and evaluate the function blocks using the
user program. The prefix "A" means "Application".

A-Inputs Description Type
A_Req Rising edge starts the function block. BOOL
A_Id Identification number (ID) of the configured TCP connection

to the communication partner from which the data should be
received.

DWORD

A_Tmo Receive timeout
If no data are received within the timeout, the function block
stops and an error message appears. If the input is not used
or set to zero, the timeout is deactivated.

INT

A_LfPos Start position of the length field in the data packet; the
numbering starts with zero.
(measured in bytes)

USINT

A_LfLen Size of the A_LfLen length field in bytes.
Permitted: 1, 2 or 4 bytes.

USINT

A_LfFac Conversion factor in bytes if the value set in the length field
is not expressed in bytes. If the input is not used or set to
zero, 1 is used as default value.

USINT

A_LfAdd Size of the header in bytes. USINT

Table 242: A-Inputs for the TCP_ReceiveVar Function Block

8 Send & Receive TCP Communication

Page 244 of 344 HI 801 101 E Rev. 3.00

A-Outputs Description Type
A_Busy TRUE: Data is still being received. BOOL
A_Valid TRUE: The data reception ended without error. BOOL
ERROR TRUE: An error occurred during the reading process

FALSE: No error
BOOL

A_Status The status and error code of the function block and of the
TCP connection are output on A_Status.

DWORD

A_Len Number of received bytes. INT

Table 243: A-Outputs for the TCP_ReceiveVar Function Block

Inputs and Outputs of the Function Block with Prefix F:

These inputs and outputs of the function block establish the connection to the ReceiveVar
function block in structure tree. The prefix "F" means "Field".

i
Common variables are used to connect the ReceiveVar function block in the structure tree
(located in the Function Blocks folder) to the TCP_ReceiveVar function block (in the user
program). These must be created beforehand using the Variable Editor.

Connect the F-Inputs of the TCP_ReceiveVar function block in the user program to the
same variables that will be connected to the outputs of the ReceiveVar function block in the
structure tree.

F-Inputs Type
F_Ack BOOL
F_Busy BOOL
F_Valid BOOL
F_Error BOOL
A_Status DWORD
A_Len INT

Table 244: F-Inputs for the TCP_ReceiveVar Function Block

Connect the F-Outputs of the TCP_ReceiveVar function block in the user program to the
same variables that will be connected to the inputs of the ReceiveVar function block in the
structure tree.

F-Outputs Type
F_Req BOOL
F_Id INT
F_Tmo TIME
F_LfPos USINT
A_LfLen USINT
A_LfFac USINT
A_LfAdd USINT

Table 245: F-Outputs for the TCP_ReceiveVar Function Block

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 245 of 344

To create the ReceiveVar function block in the structure tree

1. In the structure tree, open Configuration, Resource, Protocols, Send/Receive over
TCP, Function Blocks, New.

2. Select the ReceiveVar function block and click OK.
3. Right-click the Receive function block, and then click Edit.

 The window for assigning variables to the function blocks appears.

Connect the inputs of the ReceiveVar function block in the structure tree to the same
variables that have been previously connected to the F-Outputs of the TCP_ReceiveVar
function block in the user program.

Inputs Type
ID INT
Lf Add USINT
Lf Fac USINT
Lf Len USINT
Lf Pos USINT
REQ BOOL
TIMEOUT TIME

Table 246: Input System Variables

Connect the following outputs of the ReceiveVar function block in the structure tree to the
same variables that have been previously connected to the F-Inputs of the
TCP_ReceiveVar function block in the user program.

Outputs Type
ACK BOOL
BUSY BOOL
ERROR BOOL
LEN INT
STATUS DWORD
VALID BOOL

Table 247: Output System Variables

Data Description
Receive variables Any variables can be created in the Process Variables tab. Offsets

and types of the received variables must be identical with offsets
and types of the transmitted variables of the communication partner.

Table 248: Receive Variables

8 Send & Receive TCP Communication

Page 246 of 344 HI 801 101 E Rev. 3.00

To operate the TCP_ReceiveVar function block, the following steps are essential:

i
The receive variables must be created in the Process Variables tab located in the Variables
dialog box. Offsets and types of the receive variables must be identical with offsets and
types of the send variables of the communication partner.

1. In the user program, set the identification number for the TCP connection on the A_ID
input.

2. In the user program, set the receive timeout on the A_Tmo input.
3. In the user program, set the parameters A_LfPos, A_LfLen, A_LfFac and A_LfAdd.
4. In the user program, set the A_Req input to TRUE.

i
The function block starts with a rising edge on A_Req.

The A_Busy output is set to TRUE until the variables have been received or the receive
timeout has expired. Afterwards, A_Busy is set to FALSE and A_Valid or A_Error to TRUE.

If no error occurred during the variable reception, the A_Valid output is set to TRUE. The
variables defined in the Data tab can be evaluated. The A_Len output contains the amount
of data in bytes that was actually read.

If an error occurred during the variable reception, the A_Error output is set to TRUE and an
error is output on A_Status.

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 247 of 344

8.8 Control Panel (Send/Receive over TCP)
The Control Panel can be used to verify and control the settings for the Send/Receive
protocol. Details about the current status of the Send/Receive protocol (e.g., disturbed
connections) are displayed.

To open Control Panel for monitoring the Send/Receive protocol

1. In the structure tree, click Resource.
2. Click Online on the Action Bar.
3. In the System Log-in window, enter the access data to open the Control Panel for the

resource.
4. In the structure tree for the Control Panel, select Send/Receive Protocol.

8.8.1 Context Menu (Send/Receive Protocol)
The following command can be chosen from the context menu for the selected
Send/Receive protocol:

Reset:

Reset the statistical data (e.g., min./max. cycle time etc.) to 0.

8.8.2 View Box (Send/Receive Protocol)
The view box displays the following values of the selected Send/Receive protocol.

Element Description
Name TCP SR Protocol
CPU Load (planned) [%]
CPU Load (actual) [%]

 See Chapter 7.4.2.

Undisturbed Connections Disturbed Connection Count
Disturbed Connections Disturbed Connection Count

Table 249: S&R Protocol View Box

8.8.3 View Box (Send/Receive Server)
The view box displays the following values of the selected Modbus client.

Element Description
Name Name of the Modbus slaves
Partner Timeout [ms] Timeout within which the communication partner received at

least one time data after data sending.
Connection State Current state of this connection

0x00: Connection OK
0x01: Connection closed
0x02: Server waits for the connection to be established
0x04: Client attempts to establish connection
0x08: Connection is blocked

Peer Address IP address of the communication partner.
Peer Port Port of the communication partner.
Own Port Port of this controller
Error Code Error code (see Chapter 8.8.4)

Table 250: View Box of the Modbus Slave

8 Send & Receive TCP Communication

Page 248 of 344 HI 801 101 E Rev. 3.00

8.8.4 Error Code of the TCP Connection
The error codes can be read from the Error Code variable.

For each configured connection: The connection state is composed of the connection state
and error code of the last operation.

Error Code
Decimal

Error Code
Hexadecimal

Description

0 16#00 OK
4 16#04 Interrupted system call
5 16#05 I/O Error
6 16#06 Device unknown
9 16#09 Invalid socket descriptor
12 16#0C No memory available
13 16#0D Access Denied
14 16#0E Invalid address
16 16#10 Device occupied
22 16#16 Invalid value (e.g., in the length field)
23 16#17 Descriptor table is full
32 16#20 Connection aborted
35 16#23 Operation is blocked
36 16#24 Operation currently in process
37 16#25 Operation already in process
38 16#27 Target address required
39 16#28 Message to long
40 16#29 Incorrect protocol type for the socket
42 16#2A Protocol not available
43 16#2B Protocol not supported
45 16#2D Operation on socket not supported
47 16#2F The address is not supported by the protocol
48 16#30 Address already in use
49 16#31 The address cannot be assigned
50 16#32 Network is down
53 16#35 Software caused connection abort
54 16#36 Connection reset by peer
55 16#37 No buffer space available
56 16#38 Socket already connected
57 16#39 Socket not connected
58 16#3A Socket closed
60 16#3C Operation time expired
61 16#3D Connection refused (from peer)
65 16#41 No route to peer host
78 16#4E Function not available
254 16#FE Timeout occurred
255 16#FF Connection closed by peer

Table 251: Error Codes of the TCP Connection

Communication 8 Send & Receive TCP

HI 801 101 E Rev. 3.00 Page 249 of 344

8.8.5 Additional Error Code Table for the Function Blocks
The error codes for the function blocks (e.g., 16#8x) are only output on A_Status of the
S&R TCP function blocks.

Error Code
Decimal

Error Code
Hexadecimal

Description

129 16#81 Unknown connection ID
130 16#82 Invalid length
131 16#83 Only cyclic data is permitted for this connection
132 16#84 Connection is not currently available
133 16#85 Timeout value too large
134 16#86 Internal program error
135 16#87 Configuration error
136 16#88 Transmitted data does not correspond to the configured

data structure
137 16#89 Function block stopped
138 16#8A Timeout occurred or transmission blocked
139 16#8B Another function block of this type is already active on this

connection

Table 252: Additional Error Codes

8.8.6 Connection State
Error Code
Decimal

Error Code
Hexadecimal

Description

0 16#00 Connection OK
1 16#01 Connection closed
2 16#02 Server waits for the connection to be established
4 16#04 Client attempts to establish connection
8 16#08 Connection is blocked

Table 253: Connection State

8.8.7 Partner Connection State
Protocol State
Decimal

Description

0 No connection
1 Connection OK

Table 254: Partner's Connection State

9 SNTP Protocol Communication

Page 250 of 344 HI 801 101 E Rev. 3.00

9 SNTP Protocol
(Simple Network Time Protocol)

The SNTP protocol is used to synchronize the time of the SNTP client over the SNTP
server.

HIMax controllers can be configured and used as SNTP server and as SNTP client. The
SNTP standard in accordance with RFC 2030 (SNTP version 4) applies with the limitation
that only the unicast mode is supported.

Equipment and system requirements

Element Description
Controller HIMax with COM module or only with processor module
Activation This function is activated by default in all HIMax systems.
Interface Ethernet 10/100/1000BaseT

Table 255: Equipment and System Requirements for the S&R TCP

9.1 SNTP Client
To synchronize time settings, the SNTP client always uses the available SNTP server with
the highest priority.

One SNTP client can be configured for time synchronization in each resource.

To create a new SNTP client

1. In the structure tree, open Configuration, Resource, Protocols.
2. Right-click Protocols, then click New, SNTP Client.

 A new SNTP Client is created.
3. Right-click the SNTP client, and click Properties and select the COM module.

The dialog box for the SNTP client contains the following parameters:

Element Description
Type SNTP Client
Name Name for the SNTP client, composed of a maximum of 32 characters.
Module Selection of the COM or processor module within which the protocol is

processed.
Use Max CPU
Load

Activated: Use CPU load limit from the Max. CPU Load [%] field.
Deactivated: Do not use the CPU Load limit for this protocol.

Max. CPU Load
[%]

Maximum CPU load of module that can be used for processing the
protocols.

Range of values: 1...100%
Default value: 30%

Description Any unique description for the SNTP client

Communication 9 SNTP Protocol

HI 801 101 E Rev. 3.00 Page 251 of 344

Current
SNTP Version

The current SNTP version is displayed.

Reference
Stratum

The stratum of an SNTP client specifies the precision of its local time.
The lowest the stratum, the more precise its local time.
Zero means an unspecified or not available stratum (invalid). The SNTP
server currently used by an SNTP client is the one that can be reached
and has the highest priority.
If the stratum of the current SNTP server is lower than the stratum of the
SNTP client, the resource adopts the time of the current SNTP server.

Reference
Stratum
(continuation)

If the stratum of the current SNTP server is higher than the stratum of
the SNTP client, the resource does not adopt the time of the current
SNTP server.
If the stratum of the current SNTP server is identical with the stratum of
the SNTP client, two different cases result:
 If the SNTP Client (resource) only operates as SNTP client, the

resource adopts the time of the current SNTP server.
 If the SNTP client (resource) also operates as SNTP server, the

resource adopts the half value of the time difference to the current
SNTP server per SNTP client request (time approaches slowly).

Range of values: 1...16
Default value: 15

Client Time
Request Interval
[s]

Time interval within which the current SNTP Server performs the time
synchronization.
The Client Request Time Interval set in the SNTP client must be higher
than the timeout set in the SNTP server.

Range of values: 16...16384 s
Default value: 16

Table 256: SNTP Client Properties

9 SNTP Protocol Communication

Page 252 of 344 HI 801 101 E Rev. 3.00

9.2 SNTP Client (Server Information)
The connection to the SNTP server is configured in the SNTP Server Info.

1 to 4 SNTP Server Info can be subordinate to a SNTP client.

To create a new SNTP Server Info

1. In the structure tree, open Configuration, Resource, Protocols, SNTP Client.
2. Right-click SNTP Client, and then click New, SNTP Server Info.

 A new SNTP Server Info is created.
3. Right-click the SNTP-Server Info, click Properties , and then click the COM module.

The dialog box for the SNTP Server Info contains the following parameters:

Element Description
Type SNTP Server Info
Name Name for the SNTP server. A maximum of 32 characters.
Description Description for the SNTP server. A maximum of 31 characters.
IP Address IP address of the resource or PC in which the SNTP Server is

configured.
Default value: 0.0.0.0

SNTP Server
Priority

Priority with which the SNTP client addresses this SNTP server.
The SNTP servers configured for the SNTP client should have different
priorities.
Range of values: 0 (lowest priority) to 4294967295 (highest priority).
Default value: 1

SNTP Server
Timeout[s]

The timeout in the SNTP server must be set lower than the value for the
Time Request Interval in the SNTP client.
Range of values: 1...16384s
Default value: 1

Table 257: SNTP Server Info Properties

Communication 9 SNTP Protocol

HI 801 101 E Rev. 3.00 Page 253 of 344

9.3 SNTP Server
The SNTP server accepts the requests from a SNTP client and sends back to the SNTP
client its current time.

i
Time synchronization of a remote I/O performed by a HIMax controller.
An SNTP server must be set up on the HIMax communication module connected to the
remote I/O.

To create a new SNTP server
1. In the structure tree, open Configuration, Resource, Protocols.
2. Right-click Protocols, and then click New, SNTP Server.

 A new SNTP Server is created.
3. Right-click the SNTP Server, click Properties , and then click the COM module...

The dialog box for the SNTP server contains the following parameters:

Element Description
Type SNTP Server
Name Name for the SNTP server, composed of a maximum of 31 characters.
Module Selection of the COM or processor module within which the protocol is

processed.
Use Max CPU
Load

Activated:
Use CPU load limit from the Max. CPU Load [%] field.

Deactivated:
Do not use the CPU Load limit for this protocol.

Max. CPU Load
[%]

Maximum CPU load of the module that can be used for processing the
protocols.

Range of values: 1...100%
Default value: 30%

Description Description for the SNTP
Current SNTP
Version

The current SNTP version is displayed.

Stratum of
Timeserver

The stratum of an SNTP server specifies the precision of its local time.
The lowest the stratum, the more precise the
 local time.
Zero means an unspecified or not available stratum (invalid).
The value for the SNTP server stratum must be lower or equal to the
stratum value of the requesting SNTP client. Otherwise, the SNTP client
does not accept the SNTP server time.

Range of values: 1 ... 15
Default value: 14

Table 258: SNTP Server Properties

10 X OPC Server Communication

Page 254 of 344 HI 801 101 E Rev. 3.00

10 X OPC Server
The HIMA X-OPC Server serves as transmission interface between HIMax controllers and
third-party systems that are equipped with an OPC interface.

OPC means Openess, Productivity & Collaboration and is based on the technology
developed by Microsoft. This technology allows the user to interconnect process control
systems, visualization systems and controllers from different manufacturers, and it enables
them to exchange data with one another (see also www.opcfoundation.org). After
installation, the HIMA X OPC server is run on a PC as Windows service.

i
SILworX is used to configure and operate the entire X OPC server. The X OPC server can
be loaded, started and stopped in the SILworX Control Panel like a controller.

The X OPC server supports the following specifications:

 Data Access (DA) versions 1.0, 2.05a and 3.0
DA is used to ensure the process data transmission from the HIMax controller to the
OPC client.
Each global variable of the HIMax controller can be transferred to a OPC client.

 Alarm&Event (A&E) version 1.10
A&E is used to transfer alarms and events from HIMax controller to the OPC client.
Each global variable of the HIMax controller can be monitored using sequence of events
recording.
Events are state modifications of a variable that are performed by the plant or controllers
and are provided with a timestamp.
Alarms are events that signalize an increasing risk potential.
Events are divided in Boolean and scalar events, see Chapter 10.7.

10.1 Equipment and System Requirements
Element Description
Activation Software activation code required, see Chapter 3.5. The following

licenses can be activated on an individual basis:
 Data Access (DA) Server
 Alarm and Events (A&E) Server

PC Operating
System

The OPC server can run on an x86 based PC with the following
operating systems:

 Windows XP Professional (mind. Service Pack 2) (32-bit
 Windows Server 2003 (32-bit)
 Windows Vista Ultimate (32-bit)
 Windows Vista Business (32-bit)

Requirements to the
Host PC

Minimum requirements to the host PC:
 Pentium 4
 1 GByte (XP) or 2.5 GByte RAM (Vista)
 The network card must be designed according to the data traffic

(100 Mbit/s or 1 Gbit/s).

i
The minimum requirements only apply to the operation of a
X OPC server if no additional applications, such as SILworX
or Word, is run on the host PC.

Table 259: Equipment and System Requirements for the X-OPC Server

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 255 of 344

10.2 X-OPC Server Properties
Element Description
OPC Server The X OPC server supports the following functions:

 OPC Data Access Custom Interface, versions 1.0, 2.05a and 3.0.
 OPC Alarm & Event Interfaces 1.10

Safety-related The X-OPC server is run on a PC and is not safety-related.
Interface Recommended: Ethernet 1GBit/s
Data Exchange Data exchange via safeethernet.
Ethernet Network The underlying Ethernet network speed must be designed according

to the data traffic (min. 100 Mbit/s, recommended 1GBit/s).
Global Variables Only global variables from the configuration context may be used!
Permissible
Types of Variables

All data types that can be created in SILworX are permitted.

Non-permissible
ASCII Characters

The following characters are reserved and must not be used (e.g.,
for global variables): ! " # ' , . / \` :

HIMax Controllers An X-OPC server can support a maximum of 255 HIMax controllers.
safeethernet
Connection

The X-OPC server can exchange 128 kB in each safeethernet
connection.

X OPC Server 10 X-OPC servers can be operated on a host PC.
X-OPC Clients An X-OPC server supports 10 X-OPC clients.
Data Access Tags A Data Access server supports a maximum of 100 000 DA tags.

Definition:
Tags: Data provided by the X-OPC server. Tags correspond to the
defined global variables.
Items: Data required by the OPC client.

Alarm & Event
Event Definitions

An X-OPC Alarm & Event server supports a maximum of 100 000
event definitions.

Table 260: X-OPC Server Properties

10 X OPC Server Communication

Page 256 of 344 HI 801 101 E Rev. 3.00

10.3 HIMax Controller Properties
Element Description
safeethernet
Connection

The HIMax can exchange a total of 128 kB in each safeethernet
connection to the X-OPC server.
However, only a view is sent to the X-OPC server in each HIMax
cycle. (A view is a fragment of 1100 bytes).

Interfaces Ethernet 10/100/1000BaseT
Processor modules and COM modules
Ethernet interfaces in use can simultaneously be used for additional
protocols.

Max. number of
event definitions

A maximum of 20 000 system events and 6000 E/A events can be
defined on a HIMax controller.

Event memory size A maximum of 5000 events can be stored in the non-volatile event
buffer of the HIMax processor module.
If the event buffer is full, no new events can be stored as long as at
least one X-OPC A&E server has not read an event entry and thus
marked it as to be overwritten.

Alarm & Event
Timestamp

For each event, the event source can be selected.

The events defined as CPU events are created on the processor
module. The processor module creates all the events in each of its
cycle.
This ensures to record and evaluate the value of each global
variable as an event.

The event defined as I/O events can only be created on SOE I/O
modules (e.g., AI 32 02 or DI 32 04). The processor module creates
all the events in each of its cycle.

Range of values for the UTC timestamp (Universal Time
Coordinated):
sec fraction since 1970 in [udword]
ms fraction of the seconds as [udword] of 0-999
Default value: 2000-01-01 / 00:00:00
An automatic change to/out of daylight-saving time is not supported.

Max. number of
X-OPC A&E Server

A maximum of 4 X-OPC A&E servers can access a HIMax controller
and simultaneously read events from the event buffer of the
processor module.

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 257 of 344

10.4 Actions Required as a Result of Changes
The following table shows the actions that must be performed after a change in the
individual systems.

Type of change Changes to
 HIMax HIMatrix X-OPC
DA
Add tags C+D C+D C+D
Tag name (GV change of name) C+D C+D C+D
Delete tags C+D C+D C+D
Change views (parameter and
Add/Delete)

C+D C+D C+D

A&E
Add event definition C+D n.a. C+D
Delete Event Definition C+D n.a. C+D
Change Event Source C+D n.a. C+D
Change Alarm Texts - n.a. C+D
Change Alarm Severity - n.a. C+D
Change Ack Required parameter - n.a. C+D
Change Alarm Values with scalar
events

C+D n.a. C+D

Change the "Alarm at False"
parameter with Boolean events

C+D n.a. C+D

Change name C+D n.a. C+D
Connect I/O channel with GV C+R n.a. -
Connect state variables to GV C+R n.a. -

In general
Change safeethernet parameters C+D C+D C+D

Table 261: Actions Required as a Result of Changes

C: Code generation required

R: Reload required

D: Download required

n.a.: non-applicable

-: No action required

10.5 Forcing Global Variables on I/O Modules

i
If global variables connected to a process value are forced, the forced global variables have
no effect on global variable connected to the parameters
->State LL, L,- N, H, HH.
This particularity also applies if this alarms are configured in the Alarm&Event Editor.
When testing, these variables must be forced individually.

10 X OPC Server Communication

Page 258 of 344 HI 801 101 E Rev. 3.00

10.6 Configuring an OPC Server Connection
This example shows how to configure a redundant X-OPC server connection to a HIMax
controller.

The X-OPC servers provide the process variables and event values of the HIMax controller
to the OPC clients. The OPC clients access these process variables and event values and
represent them on their user interface.

10.6.1 Software required:
 SILworX
 X OPC Server
 OPC Client

i
SILworX is used to configure and operate the entire X OPC server. The X OPC server can
be loaded, started and stopped in the SILworX Control Panel like a controller.

10.6.2 Requirements for Operating the X-OPC Server:
 The Ethernet network should have a bandwidth of at least 100 Mbit/s (better 1GBit/s).
 The system time of computer and server must be synchronized, e.g., using SNTP.
 Make sure that the data records for Data Access and Alarm & Events on the controller,

X-OPC servers and OPC clients match one another.

Figure 69: Redundant X-OPC Operation

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 259 of 344

10.6.3 Installation on Host PC
The X-OPC server must be installed on the respective host PCs.

I
Note down the system ID and the number of the PADT port. These values are required for
generating the license key!

Figure 70: Wizard for Installing the X-OPC Server

To install the X-OPC server on the first host PC

Start the X-OPC.exe on each host PC and follow the instructions of the install wizard.

1. Enter the following data for the X-OPC server:
- System ID: 100
- PADT port: 25138
- An arbitrary name for the X-OPC server (it is displayed in the OPC client).

2. To install the X-OPC server, click Next>

Figure 71: Wizard for Installing the X-OPC Server

To install the X-OPC server on the second host PC

10 X OPC Server Communication

Page 260 of 344 HI 801 101 E Rev. 3.00

i
First determine the class ID of the first X-OPC server prior to installing the second X-OPC
server!
If one OPC client is redundantly connected to two X-OPC servers, some OPC client
systems expect that the class IDs of the two X-OPC servers are identical. First determine
the class ID of the first X-OPC server (e.g., using the OPC client) and note it down.

Start the X-OPC.exe file on the second host PC and follow the instructions of the install
wizard.

1. Enter the following data for the X-OPC server:
- System ID: 110
- PADT port: 25138
- An arbitrary name for the X-OPC server (it is displayed in the OPC client).

i
PADT port and HH port of the second X-OPC server may be identical with the first one, if
the X-OPC servers are run on different PCs.

2. Click Continue> to confirm.

To set the same class ID on the second host PC

1. Choose the CLSID setting manual for DA and AE.
2. Enter the class ID of the first X-OPC server in the CLSID fields.
3. To install the X-OPC server, click Next>

Figure 72: Setting the Class ID of the Second X-OPC Server Manually

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 261 of 344

To automatically start the X-OPC servers after restarting the PCs

1. In Windows, go to Start, Settings, Control Panel, Administration, Services and
select X-OPC Server from the list.

2. Right-click the OPC Server, then select Properties..
3. In the General tab, select the Automatic start type.

Figure 73: Settings for Starting the X-OPC Server Automatically

To verify if the X-OPC server is running on the PC

1. Open the Windows Task Manager and select the Processes tab.
2. Check if the X-OPC.exe process is running on the PC.

i
If the OPC client and OPC server are not running on the same PC, the DCOM interface
must be adjusted.
To do this, observe the instructions given in the manual of the OPC Foundation Using OPC
via DCOM witch Microsoft Windows XP Service Pack 2 Version 1.10 (see
www.opcfoundation.org).

10 X OPC Server Communication

Page 262 of 344 HI 801 101 E Rev. 3.00

10.6.4 Configuring the OPC Server in SILworX

To create a new OPC server set in SILworX

1. In the structure tree, open Configuration.
2. Right-click Configuration, and then click New, OPC-Server Set.

 A new OPC-Server set is added.
3. Right-click OPC Server Set, select Properties and accept the default values

Figure 74: Redundant X-OPC Operation

To configure the first X-OPC server in SILworX

1. In the structure tree, open Configuration, OPC Server Set.
2. Right-click OPC Server Set and select New, OPC Server.

 A new OPC server is added.
3. Right-click OPC Server and select Properties.

- Enter the system ID [SRS] (e.g., 100)
- Accept the default settings.

3. Right-click OPC Host and select Edit.
 The OPC host dialog box for configuring the IP interfaces appears.

4. Right-click anywhere in the OPC host window and select New IP Device.
- Set the PADT port (e.g., 25138).
- IP address of the PC on which the X-OPC server is installed (e.g., 172.16.3.22).
- IP address of the PC on which the X-OPC server is installed (e.g., 172.16.4.22).
- Define it as Standard Interface checking the corresponding checkbox.
- Set the HH Port (e.g., 15138)

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 263 of 344

Configure the redundant OPC server in the same OPC server set.

To configure the second OPC server

1. In the structure tree, open Configuration, OPC Server Set.
2. Right-click OPC Server Set and select New, OPC Server.

 A new OPC server is created.
3. Right-click OPC Server and select Properties.

- Enter the system ID [SRS] (e.g., 110)
- Accept the default settings.

5. Right-click OPC Host and select Edit.
 The OPC host dialog box for configuring the IP interfaces appears.

6. Right-click anywhere in the OPC host window and select New IP Device.
- Set the PADT port (e.g., 25138).
- IP address of the PC on which the X-OPC server is installed (e.g., 172.16.3.23).
- IP address of the PC on which the X-OPC server is installed (e.g., 172.16.4.23).
- Define it as Standard Interface checking the corresponding checkbox.
- Set the HH Port (e.g., 15138)

i
If a firewall is installed on the PC, the TCP/UDP PADT and HH ports for the X-OPC servers
must be selected on the Exception tab of the firewall configuration.

10.6.5 Settings for the OPC Server in the safeethernet Editor

To create the safeethernet connection between the OPC server and the resource
(HIMax controller)

1. In the OPC server set, open the safeethernet Editor.
2. In the Object Panel, drag the resource anywhere onto the workspace of the

safeethernet Editor.
3. For Alarm & Events, the Activate SOE parameter is activated by default.

Figure 75: Redundant X-OPC Operation

i
The used Ethernet interfaces of the PCs are represented in the IF CH1 (local) column. The
Ethernet interfaces of the HIMax controller must be selected in the IF CH1 (target) column.
The safeethernet parameters of the X-OPC server communication are set by default for
ensuring the maximum availability.
Receive Timeout = 1000 ms, Response Time = 500 ms etc.
For more information on the safeethernet parameters, refer to Chapter 4.6.

10.6.6 Configuring the X-OPC Data Access Server in SILworX

To create the view definitions for the safeethernet connection

10 X OPC Server Communication

Page 264 of 344 HI 801 101 E Rev. 3.00

Requirement: The safeethernet Editor of the OPC server must be opened.
1. Right-click the row corresponding to the resource to open its context menu.

2. Select Detail View to open the detail view of the safeethernet connection.
3. Click the View Definitions tab.
4. Right-click anywhere in the workspace and select New View Definition.

The Priority column is used to define how often this view should be sent compared to
the other views (a view is a fragment of 1100 bytes).
For view definitions, first use the standard setting for Priority 1, see also Chapter 10.6.8.

5. Click the OPC Server Set<->Resource tab.

Figure 76: Detailed View of the safeethernet Connection

To add the OPC receive variables

OPC receive variables are sent from the resource to the OPC server.

1. Open the Detail View of the X-OPC safeethernet Editor and select the OPC Server
Set<->Resource tab.

2. In the Object Panel, drag a Global Variable onto the OPC Server Set <-Resource
area.

3. Double-click the View Name column and select the View Definition created
beforehand..

4. Repeat these steps for every further OPC receive variables.

To add the OPC send variables

OPC send variables are sent from the OPC server to the resource.
1. Open the Detail View of the X-OPC safeethernet Editor and select the OPC Server

Set<->Resource tab.
2. In the Object Panel, drag a Global Variable onto the OPC Server Set->Resource area.
3. Double-click the View Name column and select the View Definition created

beforehand..
4. Repeat these steps for every further OPC send variables.

i
The OPC send and receive variables must be created in the OPC server set one time only.
The variables are automatically used by both X-OPC servers in the OPC server set.

To generate the code and load a resource

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 265 of 344

1. In the structure tree, select Configuration, Resource.

2. Click Code Generation in the Action Bar and click OK to confirm.
3. Thoroughly verify the messages contained in the Status Viewer and correct potential

errors.
4. Load the generated code into the resource..

To generate the code and verify the OPC set

1. In the structure tree, open Configuration, OPC Server Set.

2. Click Code Generation in the Action Bar and click OK to confirm.
3. Thoroughly verify the messages contained in the Status Viewer and correct potential

errors.

To load the generated code into the X-OPC server

1. Right-click OPC Server and select Online to perform a System Login.
2. Enter the access data:

- IP address of the PC on which the X-OPC server is installed (e.g., 172.16.3.23).
- User name: Administrator
- Password: <empty>
- Rights: Administrator

3. Click Login to open the Control Panel.
4. In the SILworX menu bar, click the Resource Download symbol.

 The code is loaded into the X-OPC server.
5. In the SILworX menu bar, click the Resource Cold Start symbol.

 The X-OPC server is running.

To open the OPC client

The name of the X-OPC server displayed in the OPC client is composed of :
HIMA (manufacturer).Service name (see Chapter 10.6.3) DA (Data Access).

Connect to the X-OPC server. At this point, the configured DA data should be transferred to
the OPC client.

10 X OPC Server Communication

Page 266 of 344 HI 801 101 E Rev. 3.00

10.6.7 Configuring the X-OPC Alarm&Event Server in SILworX
This example shows how to connect an X-OPC A&E server to a HIMax controller. The X-
OPC A&E server records the events from the HIMax controller via safeethernet and
provide them to the OPC client. The OPC client accesses these event variables and
displays them on its user interface.

To create an Alarm&Event Editor

1. In the structure tree, open Configuration, Resource.
2. Right-click Resource and select New, Alarm&Events.

 A new Alarm&Event Editor is created.

To create the Alarm&Events

1. In the structure tree, open Configuration, Resource.
2. Right-click Alarm & Events and select Edit.
3. Select the Event Definition Bool tab for Boolean events, see Chapter 10.7.1.
4. Select the Event Definition Scalar tab for scalar events, see Chapter 10.7.2.
5. In the Object Panel, drag the global variable anywhere in the workspace of the Alarm &

Event Editor.
6. Enter the event priority in the safeethernet Editor, see Chapter 10.6.8.

Figure 77: Alarm & Event Editor

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 267 of 344

To establish the acknowledge connection between both
Alarm&Event X-OPC servers:

i
If two Alarm&Event X-OPC servers are operated redundantly, the acknowledgements to
confirm the alarms on both X-OPC servers can be synchronized. To do this, an
acknowledge connection is created.

1. In the structure tree, open Configuration, OPC Server Set, New.
2. Right-click OPC Server Set and select New, OPC A&E Ack.
3. Select the following IP connections in the OPC A&E Ack dialog box.

- IF CH1 (OPC server 1, e.g., 172.16.3.22).
- IF CH2 (OPC server 1, e.g., 172.16.4.22).
- IF CH1 (OPC server 2, e.g.,172.16.3.23).
- IF CH2 (OPC server 2, e.g., 172.16.4.23).

Figure 78: Redundant X-OPC Operation

To generate the code and load a resource

1. In the structure tree, select Configuration, Resource.

2. Click Code Generation in the Action Bar and click OK to confirm.
3. Thoroughly verify the messages contained in the Status Viewer and correct potential

errors.
4. Load the generated code into the resource..

To generate the code and verify the OPC set

1. In the structure tree, open Configuration, OPC Server Set.

2. Click Code Generation in the Action Bar and click OK to confirm.
3. Thoroughly verify the messages contained in the Status Viewer and correct potential

errors.

To load the generated code into the X-OPC server

1. Right-click the OPC Server and select Online to log in to the system.
2. Enter the access data:

- IP address of the PC on which the X-OPC server is installed (e.g., 172.16.3.23).
- User name: Administrator
- Password: <empty>
- Rights: Administrator

3. Click Login to open the Control Panel.
4. In the SILworX menu bar, click the Resource Download symbol.

 The code is loaded into the OPC server.
5. In the SILworX menu bar, click the Resource Cold Start symbol.

 The OPC server is running.

10 X OPC Server Communication

Page 268 of 344 HI 801 101 E Rev. 3.00

To open the OPC client

The name of the X-OPC server displayed in the OPC client is composed of:
HIMA (manufacturer).Service name (see Chapter 10.6.3) AE (Alarm&Event).

Connect to the X-OPC server. At this point, the configured alarms and events should be
transferred to the OPC client.

i
If a controller and an X-OPC A&E server are connected, the X-OPC A&E server must
synchronize with the controller. To do this, the X-OPC A&E server reads the current state of
all the variables defined as events and transfers the upcoming alarms to the OPC client. An
image of the current controller state can thus be created in the OPC client. The events are
only read at this moment.
After the X-OPC server has synchronized with the controller, all the events on the OPC
client are updated. Entries for events with an older timestamp are overwritten with the
currently read states of the event variables

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 269 of 344

10.6.8 Configuring the Views and Priorities in SILworX
The HIMax system can send a total of 128 kB for each safeethernet connection to an X-
OPC server, but only 1100 bytes per HIMax cycle. To send more data via a safeethernet
connection, data must be fragmented. The Priority parameter associated with these
fragments (views) can be used to define how often these views should be refreshed.

i
Views with n priority and views with m priority are sent at a ration of n:m times.

For the reaction time from the controller to the X-OPC Server, also observe the number of
SOE views and commands (e.g. stopp, start).

TR = t1 + t2 + t3 + t4 only applies if the priority of all views for state data is equal to 1

TR Worst Case Reaction Time

t1 Safety Time of PES 1

t2 Number of Views * Receive TMO

t3 Safety Time of X-OPC Server

t4 Delay due to SOE function; depending on the number of events and on how the
connection is established

The reaction time for the inverse direction can be determined using the same formula, but
only one view has usually an effect in this case since the X- OPC server only transfers the
data written by OPC clients.

Maximum number of views: 1024

Maximum size of a view: 1100 bytes

Range of values for the priorities: 1 (highest) to 65 535 (lowest)

Designation Priority default value
Priority of events (Alarm&Event) 1
Priority of state values (Alarm&Event) 10
Priority of the view definitions (Data Access) 1

Table 262: Default Values Associated with the Priorities

10 X OPC Server Communication

Page 270 of 344 HI 801 101 E Rev. 3.00

Priority of Event Views (Alarm&Event)
The events created by the user in the Alarm&Event Editor are automatically fragmented
and transferred in views.

Enter the event priority in the columns Priority of Events and Priority of State Values of
the safeethernet Editor; these priorities are thus valid for all the Alarm&Event views of that
given safeethernet connection.

To set the priority values for Alarm&Event Views

1. In the OPC server set, open the safeethernet Editor.

Figure 79: safeethernet Editor

2. Double-click Priority of Events to modify the priority of the events.
All event views are assigned with the priority entered in the Priority of Events column
(e.g., 1). This is done to define the priority with which the X-OPC server requires events
from the controller. If no events exist in the controller at a given time point, none is
transferred.

3. Double-click Priority of State Values to modify the priority of the event state values. All
views for the event state values are assigned with the priority entered in the Priority of
State Values column (e.g., 10).

4

i
 The state values of the events are only required for synchronization reasons (e.g., when
the connection is being established); for this reason, they can be transferred in wider
intervals than the events.

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 271 of 344

Data Access View Priorities
The user can assign global variables to each Data Access View and set its priority to
determine how often these variables must be refreshed.

To set the priority values for Data Access Views

Requirement: The safeethernet Editor of the OPC server must be opened.
1. Right-click the row corresponding to the resource to open its context menu.

2. Select Detail View to open the detail view of the safeethernet connection.
3. Click the View Definitions tab.
4. Set the priority for Data Access Views in the Priority column.

- Assign a high priority to Data Access Views with global variables that should be
 refreshed frequently (e.g., 1).

- Assign a lower priority to data access views with global variables that should be
 refreshed less frequently (e.g., 10)

Figure 80: Detailed View of the safeethernet Connection

Further, the state and timestamp of each data access view can be read using the following
variables.

Name Description
View Timestamp [m] Millisecond fraction of the timestamp

(current system time)
View Timestamp [s] Second fraction of the timestamp

(current system time)
View State Status Description

0 CLOSED: Connection is closed
1 TRY OPEN: An attempt is made to open the

connection, but it is still closed.
2 CONNECTED: The connection exists and current

view data were received (cp. timestamp). As long
as no view data is received, the view state is set
to TRY_OPEN when establishing the connection.

i
The connection state of the safeethernet Editor (see
Chapter 4.4) is set to CONNECTED as soon as the
connection is open. Unlike View State, no data may have
been exchanged here.

Table 263: State and Timestamp for the Data Access Views

10 X OPC Server Communication

Page 272 of 344 HI 801 101 E Rev. 3.00

10.7 Alarm & Event Editor
The Alarm & Event Editor is used to set the parameters for the alarms and events of the
HIMax controller.

To create an Alarm&Event Editor

1. In the structure tree, open Configuration, Resource.
2. Right-click Resource and select New, Alarm&Events.

 A new Alarm & Events object is added.

To create the Alarm&Events

1. In the structure tree, open Configuration, Resource.
2. Right-click Alarm & Events and select Edit.
3 Select the Event Definition BOOL tab for Boolean events, see Chapter 10.7.1.
4. Select the Event Definition Scalar tab for scalar events, see Chapter 10.7.2.
5. In the Object Panel, drag the global variable anywhere in the workspace of the Alarm &

Event Editor.
6. Enter the event priority in the safeethernet Editor, see Chapter 10.6.8.

HIMax differentiate between Boolean and scalar events.

10.7.1 Boolean Events
 Changes of Boolean variables, e.g., of digital inputs.
 Alarm and normal state: They can be arbitrarily assigned to the variable states.

 Enter the parameters for the Boolean events in the Alarm & Event Editor of the resource;
the editor contains the following tabs:

Column Description Range of Values
Name Name of the event definition Text, max. 31

characters.
Global Variable Name of the assigned global variable (added using a

drag&drop operation)

Data type Data type of the global variable; it cannot be modified. BOOL
Event Source CPU event

The timestamp is created on a processor
module. The processor module creates all the
events in each of its cycle.

IO event Der Zeitstempel wird auf einem geeigneten
E/A-Modul gebildet (z. B. DI 32 04).

Auto event A CPU event and, if available, IO events of the
I/O module are created.

Default value: CPU event

CPU Event, IO Event,
Auto Event

Alarm when
FALSE

Activated If the global variable value changes from TRUE
to FALSE, an event is triggered.

Deactivated If the global variable value changes from
FALSE to TRUE, an event is triggered.

Default value: Deactivated

Checkbox activated,
deactivated

Alarm Text Text specifying the alarm state Text
Alarm Severity Priority of the alarm state

Default value: 1
1...1000

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 273 of 344

Alarm Ack
Required

Activated The alarm state must be confirmed by the user
(acknowledgement)

Deactivated The alarm state may not be confirmed by the
user

Default value: Deactivated

Checkbox activated,
deactivated

Return to Normal
Text

Text specifying the alarm state Text

Return to Normal
Severity

Priority of the normal state 1...1000

Return to Normal
Ack Required

The normal state must be confirmed by the user
(acknowledgement)
Default value: Deactivated

Checkbox activated,
deactivated

Table 264: Parameters for Boolean Events

10.7.2 Scalar Events
 Exceedance of the limits defined for a scalar variable, e.g., an analog input.
 Two upper limits and two lower limits are possible.

For the limit values, the following condition must be met:
Superior limit ≥ upper limit ≥ normal area ≥ lower limit ≥ inferior limit.
An hysteresis is effective in the following cases:
- If the value falls below the upper limit
- If the value exceeds the lower limit
An hysteresis is defined to avoid a needless large number of events when a global
variable strongly oscillate around a limit.

 HH Alarm Value
 H Alarm Value
 L Alarm Value

 LL Alarm Value
 Hysteresis

Figure 81: Five Areas of a Scalar Event

 Enter the parameters for the scalar events in the Alarm & Event Editor of the resource; the
editor contains the following tabs:

10 X OPC Server Communication

Page 274 of 344 HI 801 101 E Rev. 3.00

Column Description Range of Values
Name Name of the event definition Text, max. 31

characters.
Global Variable Name of the assigned global variable (added using a

drag&drop operation)

Data type Data type of the global variable; it cannot be modified. depending on the
global variable type

Event Source CPU event

The timestamp is created on a processor module.
The processor module creates all the events in
each of its cycle.

IO event The timestamp is built on an appropriate I/O
module (e.g., AI 32 02).

Auto event

A CPU event and, if available, IO events of the I/O
module are created.

Default value: CPU Event

CPU Event, IO Event,
Auto Event

HH Alarm Text Text specifying the alarm state of the upper limit. Text
HH Alarm Value Upper limit triggering an event. Condition:

(HH Alarm Value - Hysteresis) > H Alarm Value or HH Alarm
Value = H Alarm Value

depending on the
global variable type

HH Alarm
Severity

Priority of the upper limit; default value: 1 1...1000

HH Ack Required Activated The user must confirm that the upper limit has
been exceeded (acknowledgment).

Deactivated The user may not confirm that the upper limit has
been exceeded.

Default value: Deactivated

Checkbox activated,
deactivated

H Alarm Text Text specifying the alarm state of the upper limit. Text
H Alarm Value Upper limit triggering an event. Condition:

(H Alarm Value - Hysteresis) > (L Alarm Value + Hysteresis)
or H Alarm Value = L Alarm Value

depending on the
global variable type

H Alarm Severity Priority of the upper limit; default value: 1 1...1000
H Ack Required Activated The user must confirm that the upper limit has

been exceeded (acknowledgment).
Deactivated The user may not confirm that the upper limit has

been exceeded.
Default value: Deactivated

Checkbox activated,
deactivated

Return to Normal
Text

Text specifying the alarm state Text

Return to Normal
Severity

Priority of the normal state; default value: 1 1...1000

Return to Normal
Ack Required

The normal state must be confirmed by the user
(acknowledgement); default value: Deactivated

Checkbox activated,
deactivated

L Alarm Text Text specifying the alarm state of the lower limit. Text
L Alarm Value Lower limit triggering an event. Condition:

(L Alarm Value + Hysteresis) < (H Alarm Value - Hysteresis)
or L Alarm Value = H Alarm Value

depending on the
global variable type

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 275 of 344

L Alarm Severity Priority of the lower limit; default value: 1 1...1000
L Ack Required Activated The user must confirm that the lower limit has

been exceeded (acknowledgment).
Deactivated The user may not confirm that the lower limit has

been exceeded.
Default value: Deactivated

Checkbox activated,
deactivated

LL Alarm Text Text specifying the alarm state of the lowest limit. Text
LL Alarm Value Lower limit triggering an event. Condition:

(LL Alarm Value + Hysteresis) < (L Alarm Value) or
LL Alarm Value = L Alarm Value

depending on the
global variable type

LL Alarm
Severity

Priority of the lowest limit; default value: 1 1...1000

LL Ack Required Activated The user must confirm that the lowest limit has
been exceeded (acknowledgment).

Deactivated The user may not confirm that the lowest limit has
been exceeded.

Default value: Deactivated

Checkbox activated,
deactivated

Alarm Hysteresis The hysteresis avoids that many events are continuously
created when the process value often oscillate around a limit.

depending on the
global variable type

Table 265: ᅠParameters for Scalar Events

10 X OPC Server Communication

Page 276 of 344 HI 801 101 E Rev. 3.00

10.8 Parameters for the X-OPC Server Properties

i
SILworX is used to configure and operate the entire X OPC server. The X OPC server can
be loaded, started and stopped in the SILworX Control Panel like a controller.

10.8.1 OPC Server Set
The OPC set is used as common platform for configuring up to two OPC servers.

The OPC Server Set properties for the two redundant X-OPC servers are automatically set
identical.

To create a new OPC server set
1. In the structure tree, open Configuration.
2. Right-click Configuration and select New, OPC Server Set to create a new OPC

server set.
3. Right-click OPC Server Set and select Properties. Accept the default values.

The Properties dialog box for the OPC server set contains the following parameters:

Element Description
Name Name of the OPC server set. A maximum of 31 characters.
Safety Time [ms] The safety time is the time in milliseconds within which the X-

OPC server must react to an error.
Condition:
safety time ≥ 2 * watchdog time

Range of values:
2000...400 000 ms

Default value: 20 000 ms

Watchdog Time [ms] The watchdog time is the maximum time that the OPC server
may require to complete a program cycle. If the defined
watchdog time is exceeded (the execution of a program cycle
takes too long), the X-OPC server is stopped.

Condition:
WDT ≥ 1000 ms and ≤ 0,5 * safety time

Range of values:
1000...200 000 ms

Default value: 10 000 ms

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 277 of 344

Main Enable The setting of the 'Main Enable' OPC switch affects the
function of the other OPC switches.

If 'Main Enable' is deactivated, the parameters set for the
other OPC switches cannot be modified while the user
program is being processed (the controller is in RUN).

Default value: Activated

Autostart Autostart defines if the OPC configurations may be
automatically started with a cold start or a warm start after
powering up or booting the controller or should not be started
(Off).

If Autostart is deactivated, the X-OPC server adopts the
STOP/VALID CONFIGURATION state after booting.
Default value: Deactivated

Start Allowed Only if Start Allowed is activated, an X-OPC server can be
started from within the programming tool.

If Start Allowed is deactivated, the X-OPC server cannot be
started from within the programming tool. In such a case, the
X-OPC server can only be started if Autostart is activated and
the host PC is started or rebooted.

If neither Autostart nor Start Allowed is activated, the X-OPC
server cannot be started. This can be required, for instance,
during maintenance actions to prevent the system from
starting.
Default value: Activated

Load Allowed If Load Allowed is deactivated, no (new) OPC configuration
can be loaded into the controller.

Deactivate Loading Allowed to avoid that the OPC
configuration loaded into the X-OPC server is overwritten.
Default value: Activated

Reload Allowed No function yet!

Global Forcing Allowed Global forcing can only be started if Global Forcing Allowed is
activated.

i
The Force Editor can also be used to display variable
contents if Global Forcing Allowed is deactivated.

Default value: Deactivated

10 X OPC Server Communication

Page 278 of 344 HI 801 101 E Rev. 3.00

Global Force Timeout
Reaction

If Global Force Timeout Reaction, Stop Resource is selected,
the X-OPC server enters the STOP state after the preset
force time has expired. All the outputs of the X-OPC server
are set to LOW.

If Global Force Timeout Reaction, Stop Forcing Only is
selected, the X-OPC server continues executing the OPC
configuration after the force time has expired.

i
If forcing is allowed, carefully check the setting for
'Stop at Force Timeout'. Also observe the instructions
provided in the Safety Manual.

Default value: Stop Resource

Max.Com. Time Slice
ASYNC [ms]

Max. Com. Time Slice ASYNC [ms] is the time in milliseconds
that is reserved in each X-OPC server cycle for performing all
the communication tasks scheduled for P2P communication.
Default value: 500 ms

Target Cycle Time [ms] Target cycle time for the X-OPC Server
Default value: 50 ms

safeethernet CRC
Namespace Separator Dot .

Slash /
Colon :
Backslash \

Default value: Dot

Namespace Type Depending on the OPC client requirements, the following
name space types can be set:

 Hierarchical Namespace
 Flat Namespace

Default value: Hierarchical name space

Short tag names for DA This parameter can only be activated if Flat Namespace is
selected.
It is an option in which data and event are offered to the OPC
client without any further context (path name).
Default value: Deactivated

Changeless update Setting according to the OPC client requirement

Activated:
If Changeless Update is selected and 'OPC Group
UpdateRate' has expired, the X-OPC server provides all items
to the OPC client.

Deactivated:
If Changeless Update is not selected,only the modified values
are provided to the OPC client (this behavior is in accordance
with the OPC Specification.

Communication 10 X OPC Server

HI 801 101 E Rev. 3.00 Page 279 of 344

Cycle Delay [ms] The cycle delay limits the CPU load of the PC due to the X-
OPC server to allow other programs to be run.

Range of values: 1...100 ms

Default value: 5 ms

Simple-Events for CPU I/O
Events

Never
Only at Start
Allways

Short Tag Names for I&O This parameter can only be activated if Flat Namespace is
selected.
It is an option in which data and event sources are offered to
the OPC client without any further context (path name).
Default value: Deactivated

Table 266: Properties

10 X OPC Server Communication

Page 280 of 344 HI 801 101 E Rev. 3.00

10.8.2 OPC Server

To create a new OPC server

1. In the structure tree, open Configuration, OPC Server Set.
2. Right-click OPC Server Set and select New, OPC Server to create a new OPC server.
3. Right-click OPC Server and select Properties.

The Properties dialog box for the OPC server contains the following parameters:

Element Description
Name Name for the OPC server. A maximum of 31 characters.
System ID [SRS] Default value: 60000
Table 267: Properties

To open the OPC host

1. In the structure tree, open Configuration, OPC Server Set, OPC Server.
2. Right-click OPC Host and select Edit to get an overview of the IP interfaces.

The Edit dialog box for the OPC host contains the following parameters:

Element Description
PADT Port Default value: 25138
Name Name for the OPC server set. A maximum of 31 characters.
IP Address IP address of the host PC.

Default value: 192.168.0.1
Standard Interface It must be selected if the host PC is equipped with more than

one Ethernet port.
Default value: Activated

HH Port Default value: 15138
Table 268: Edit

10.9 Uninstalling the X-OPC Server

To uninstall the X-OPC server

1. Open Start, Settings, Control Panel, Software in Windows.
2. From the list, select the X-OPC server to be uninstalled and click the Remove button.
3. Follow the instructions of the Uninstall Wizard.

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 281 of 344

11 ComUserTask
In addition to the user program created in SILworX, a C program can also be run in the
controller.

With no interaction with the safe processor module, this non-safe C program runs as a
ComUserTask on the communication module of the controller.

The ComUserTask has its own cycle time that does not depend on the CPU cycle.

This allows the users to program in C any kind of applications and implement them as
ComUserTask, for instance:

 Communication interfaces for special protocols (TCP, UDP, etc.).
 Gateway function between TCP/UDP and serial communication.

11.1 System Requirements
Equipment and system requirements

Element Description
Controller HIMax with COM module

Processor module The Ethernet interfaces on the processor module may not be used

for ComUserTask.
COM module Ethernet 10/100BaseT

Pin assignment of the D-sub connectors FB1 and FB2 e.g., for RS
232.
If the serial fieldbus interface (FB1 or FB2) are used, they must be
equipped with an optional HIMA submodule, see Chapter 3.4.

Activation Software activation code required, see Chapter 3.5.

Table 269: Equipment and System Requirements for the ComUserTask

ComUserTask Properties

Element Description
ComUserTask One ComUserTask can be configured for each HIMax controller.
Safety-related No
Data Exchange Configurable
Code and data area Start address 0x790000

Length 448 kBytes
Stack The stack is located in a reserved memory outside the code/data

area.
Length 64 kByte

Table 270: ComUserTask Properties

11.1.1 Creating a ComUserTask

To create a new ComUserTask

1. In the structure tree, open Configuration, Resource, Protocols.
2. On the context menu for protocols, click New, ComUserTask to add a new

ComUserTask.
3. Right-click the ComUserTask, click Properties and select the COM Module.
 Accept the default settings for the first configuration.

11 ComUserTask Communication

Page 282 of 344 HI 801 101 E Rev. 3.00

11.2 Requirements
In addition to the normal C commands, a specific library with defined functions is available
for programming a ComUserTask (see Chapter 11.4).

Development Environment

The development environment comprises the GNU C Compiler and Cygwin which are
available on a separate installation CD (not included in ELOP II Factory) and are subject to
the conditions of the GNU General Public License (see www.gnu.org).

The newest versions and documents for the development environment can be downloaded
from the corresponding Internet pages at www.cygwin.com and www.gnu.org.

Controller

In the HIMax/ HIMatrix controllers the ComUserTask has no access to the safe hardware
inputs and outputs. If an access to the safe hardware inputs and outputs is required, a CPU
user program must exist for connecting the variables (see 11.4.5).

11.3 Abbreviations
Abbreviatio
n

Description

CUCB COM User Callback
(CUCB_ Functions invoked by the COM)

CUIT COM User IRQ Task
CUL COM User Library

(CUL_ Functions invoked in the CUT)
CUT ComUserTask
GNU GNU project
IF Interface
FB Field bus interface of the controller
FIFO First In First Out (Data memory)
NVRam Non volatile random access memory,

non volatile memory

Table 271: Abbreviations

http://de.wikipedia.org/wiki/Random_Access_Memory
http://de.wikipedia.org/wiki/Random_Access_Memory

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 283 of 344

11.4 CUT Interface in SILworX
The process data communication of the ComUserTask runs between COM and CPU.

 WARNING

The loaded ComUserTask must not use privileged commands of the COM module.
The code of the ComUserTask runs in the COM in a non-reactive way to the safe
CPU. This ensures that the safe CPU is protected against the CUT code. Note that
errors in the CUT code can disturb the entire COM function, thus affecting or
stopping the controller's function. The CPU safety functions, however, are not
compromised.

11.4.1 Schedule Interval [ms]
The ComUserTask is invoked in a predefined schedule interval [ms] during the controller's
states RUN and STOP_VALID_CONFIG (COM module).

In SILworX, Schedule Interval [ms] can be set in the ComUserTask Properties.

Schedule Interval [ms]
Range of
values:

10 .. 255 ms

Default value: 15 ms

Table 272: Schedule Interval [ms]

i
The COM processor time available to the CUT depends on the other configured COM
functions such as safeethernet or Modbus TCP.
If CUT is not finished within the schedule interval, each call to restart the CUT is ignored
until CUT has been processed.

11.4.2 Scheduling Preprocessing
In the controller's state RUN:

Before each CUT call, the COM module provides the process data of the safe CPU to the
CUT in a memory area defined by CUT.

In the controller's state STOP:

No process data is exchanged between COM and safe CPU.

11.4.3 Scheduling Postprocessing
In the controller's state RUN:

After each CUT call, the COM module provides the process data of the CUT to the safe
CPU.

In the controller's state STOP:

No process data is exchanged between COM and safe CPU.

11.4.4 STOP_INVALID_CONFIG
If the COM is in the STOP_INVALID_CONFIG state, CUT is not executed.

If the COM module enters the STOP_INVALID_CONFIG state and executes CUT or CUIT,
these functions are terminated.

11 ComUserTask Communication

Page 284 of 344 HI 801 101 E Rev. 3.00

11.4.5 CUT Interface Variables (CPU<->CUT)
Configuring not safety-related process data communication between safe CPU and COM
(CUT).

Send Direction Max. Process Data Size

COM->CPU 16375 bytes data (16384 bytes – 9 status bytes)

CPU->COM 16382 bytes data (16384 bytes – 2 control bytes)

CPU
(safe application

program)

COM
(COM User Task)

PDI

PDO

Data inputs (ELOP II Factory)

Data outputs (ELOP II Factory)

CUT_PD_OUT_SECT (COM->CPU)

CUT_PD_IN_SECT (CPU->COM)

Process data exchange with COM User Task (CUT)

Figure 82: Process Data Exchange between CPU and COM (CUT)

All data types that are used in SILworX can be exchanged.

The data structure must be configured in SILworX.
The size of the data structures CUT_PDI and CUT_PDO (in the compiled CUT C code)
must correspond to the size of the data structure configured in SILworX.

i
If the data structures CUT_PDI and CUT_PDO are not available in the compiled C code or
do not have the same size as the data structure of the process data configured in SILworX,
the configuration is invalid and the COM module enters the STOP_INVALID_CONFIG
state.
Process data communication takes place in the RUN state only.

The Edit menu function opens the tabs Process Variables and System Variables.

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 285 of 344

System Variables
The System Variables tab contains the following system parameters for monitoring and
controlling the CUT:

Name Function

Execution Time
[DWORD]

Execution time of the ComUserTask in µs

Real schedule interval
[DWORD]

Time between two ComUserTask cycles in ms

User task state control
[WORD]

The following table shows how the user can control the
ComUserTask with the User Task State Control system
parameter:

Function Description
DISABLED
0x8000

The application program locks
the CUT (CUT is not started).

Autostart
Default: 0

After termination a new start of
the CUT is automatically allowed
if the error is eliminated.

TOGGLE_MODE_0
0x0100

After termination of the CUT a
new start of the CUT is only
allowed after writing
TOGGLE_MODE_1.

TOGGLE_MODE_1
0x0101

After termination of the CUT a
new start of the CUT is only
allowed after writing
TOGGLE_MODE_0.

State of the User Task
[BYTE]

1 = RUNNING (CUT is running)
0 = ERROR (CUT is not running due to an error)

Table 273: ComUserTask System Variables

11 ComUserTask Communication

Page 286 of 344 HI 801 101 E Rev. 3.00

Process Variables
Input Signals (COM->CPU)
The Input Signals tab contains the signals that should be transferred from the COM
module (CUT) to the CPU (CPU input area).

 CAUTION

Non-safe data of ComUserTask!
Non-safe variables of the ComUserTask must not hinder the safety functions of the
CPU user program.

Input signals of ComUserTask

Name Data type Offset
CUT_Counter DWORD 0
Time_Stamp DWORD 4

Table 274: Input signals of ComUserTask

Required entry in the C code

The C code of the COM User Tasks must have the following CUT_PDO data structure for
the COM outputs (CPU input area):

The size of the CUT_PDO data structure must correspond to the size of the data inputs
configured in SILworX.

Output Signals (CPU->COM)
The Output Signals tab contains the signals that should be transferred from the CPU
(CPU output area) to the COM module (CUT).

ComUserTask Output Signals

Name Data type Offset
CPU/COM_1 WORD 0
CPU/COM_2 WORD 2

Table 275: ComUserTask Output Signals

Required entry in the C code

The C code of the ComUserTask must have the following CUT_PDI data structure for the
COM inputs (CPU output area):

The size of the CUT_PDI data structure must correspond to the size of the data outputs
configured in SILworX.

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 287 of 344

11.5 CUT Functions

11.5.1 COM User Callback Functions
The COM User callback functions have all the CUCB _ prefix and are directly invoked from
the COM when events occur.

i
All COM user callback functions must be defined in the user's C code!
Also the CUCB_IrqService function, which is not supported for HIMax and HIMatrix, must
be defined in the user C-Code for reasons of compatibility.
Funktion prototype: void CUCB_IrqService(udword devNo) {}

The COM user callback (CUCB) and the COM user library (CUL) functions share the stack
and the same code and data memory. These functions mutually ensure the consistency of
the data shared (variables).

11.5.2 COM User Library Functions
All COM user library functions and variables have the CUL_ prefix and are invoked in the
CUT.

All the CUL functions are available via the libcut.a object file.

11.5.3 Header Files
The two header files cut.h and cut_types.h contain all function prototypes for CUL/CUCB
and the related data types and constants.

For the data types, the following short cuts are defined in the header file cut_types.h:

typedef unsigned long udword;

typedef unsigned short uword;

typedef unsigned char ubyte;

typedef signed long dword;

typedef signed short word;

typedef signed char sbyte;

#ifndef HAS_BOOL

typedef unsigned char bool; // with 0=FALSE, otherwise TRUE

#endif

11.5.4 Code/Data Area and Stack for CUT
The code/data area is a coherent memory area that begins with the code segment and the
initial data segment and continues with the data segments. In the HIMA linker files
(makeinc.inc.app and section.dld), the written segment sequence and the available
storage capacity are predefined.

11 ComUserTask Communication

Page 288 of 344 HI 801 101 E Rev. 3.00

The ComUserTask uses the HIMA linker files to optimally distribute the available area
among code and data.

Start Address 0x790000

Length 448 kByte

The stack is located in a reserved memory area defined when the COM operating system is
started.

End address Dynamically (from the point of view of CUT)

Length 64 kByte

11.5.5 Start Function CUCB_TaskLoop
CUCB_TaskLoop() is the starting function associated with the ComUserTask.

The ComUserTask program execution begins when this function is invoked (see Chapter
11.4.1 Schedule Interval[ms]).

Function Prototype:

void CUCB_TaskLoop(udword mode)

Parameter:

The function has the following parameter:

Parameter Description
mode 1 = MODE_STOP corresponds to the mode STOP_VALID_CONFIG

2 = MODE_RUN controller's normal operation

Table 276: Parameter

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 289 of 344

11.5.6 RS485 / RS232 IF Serial Interfaces
The used fieldbus interfaces must be equipped with the corresponding fieldbus submodules
(hardware).

i
For each HIMax controller, the user can refer to the corresponding system documentation.

CUL_AscOpen
The CUL_AscOpen()function initializes the entered serial interface (comId) with the given
parameters. After invoking the CUL_AscOpen()function, the COM immediately begins
receiving data via this interface.

The received data is stored in a FIFO software with a size of 1kByte for each initialized
serial interface.

The data is stored until it is read out with the CUT function CUL_AscRcv().

i
If data is read out of the FIFO more slowly than it is received, the new data is rejected.

Function Prototype:

udword CUL_AscOpen(Udword comId,
Ubyte duplex,
udword baudRate,
ubyte parity,
ubyte stopBits)

Parameter:

The function has the following parameters:

11 ComUserTask Communication

Page 290 of 344 HI 801 101 E Rev. 3.00

Parameter Description
comId Field bus interface (RS485, RS 232)

1 = FB1,
2 = FB2,
3 = FB3,
4 = FB4_SERVICE

duplex 0 = Full duplex (only permitted for FB4 if RS232)
1 = Half duplex

baudRate 1 = 1200 Bit
2 = 2400 Bit
3 = 4800 Bit
4 = 9600 Bit
5 = 19200 Bi
6 = 38400 Bi
7 = 57600 Bi
8 = 115000 Bit

The data bit length is fixed and set to 8 data bits. Start, parity and stop bits must be added
to these 8 data bits.
parity 0 = NONE

1 = EVEN
2 = ODD

stopBits 1 = 1 Bit
2 = 2 Bits

Table 277: Parameter

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

CUL_OKAY The interface was initialized successfully.

CUL_ALREADY_IN_USE The interface is used by other COM functions or is already
open.

CUL_INVALID_PARAM Incorrect parameters or parameter combinations transmitted.

CUL_DEVICE_ERROR Other errors

Table 278: Return Value

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 291 of 344

CUL_AscClose
The CUL_AscClose()function closes the serial interface entered in comId. In doing so,
the data that has already been received but not read out with the function CUL_AscRcv() is
deleted in FIFO.

Function Prototype:

Udword CUL_AscClose(udword comId)

Parameter:

The function has the following parameter:

Parameter Description

comId Field bus interface (RS485, RS 232)
1 = FB1,
2 = FB2,
3 = FB3,
4 = FB4_SERVICE

Table 279: Parameter

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

CUL_OKAY The interface was closed successfully .

CUL_NOT_OPENED The interface was not opened (by the CUT).

CUL_INVALID_PARAM Incorrect parameters or parameter combinations transmitted.

CUL_DEVICE_ERROR Other errors

Table 280: Return Value

11 ComUserTask Communication

Page 292 of 344 HI 801 101 E Rev. 3.00

CUL_AscRcv

The CUL_AscRcv()function instructs the COM to provide a defined data volume from the
FIFO.

As soon as the requested data is available (and the CUL or the scheduling allows it), the
COM invokes the CUCB_AscRcvReady() function .

If not enough data is contained in FIFO, the CUL_AscRcv()function returns immediately.

The instruction to receive data is stored until:

 The instruction was completely processed or
 the CUL_AscClose() function is invoked or
 redefined due to a new instruction

i
Until the instruction is completely processed, the *pBuf content may only be changed using
the CUCB_AscRcvReady() function.

Function Prototype:

Udword CUL_AscRcv(udword comId, CUCB_ASC_BUFFER *pBuf)

typedef struct CUCB_AscBuffer {

 bool bAscState;
bool bError;
uword align;
udword mDataIdx;
udword mDataMax;

udword aData[1];
}CUCB_ASC_BUFFER;

// for using by CUT/CUCB
// for using by CUT/CUCB
// COM is 4 aligned, long's are higher-performance
// Byte offset in aData from there on the data are loacted
// max. Byte offset: (mDataMax-mDataIdx) indicates,
// how many bytes in aData have to be sent or received
// Start point of the data copy range

Parameter:

The function has the following parameters:

Parameter Description

comId Field bus interface (RS485, RS 232)
1 = FB1,
2 = FB2,
3 = FB3,
4 = FB4_SERVICE

pBuf It defines the requested amount of data and the location, to which the data
should be copied, before CUCB_AscReady() is invoked. If sufficient data has
already been received in the FIFO, the CUCB_AscRcvReady() function is
invoked during CUL_AscRcv().

Table 281: Parameter

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 293 of 344

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

CUL_OKAY If the order was successful, otherwise error code.

CUL_NOT_OPENED If the interface was not opened by the CUT.

CUL_INVALID_PARAM Incorrect parameters or parameter combinations transmitted.

CUL_DEVICE_ERROR Other errors

Table 282: Return Value

Restrictions:

 If the memory area (defined by CUCB_ASC_BUFFER) is not allocated in the CUT data
segment, CUT and CUIT are terminated.

 A maximum of 1024 bytes of data can be requested.

11 ComUserTask Communication

Page 294 of 344 HI 801 101 E Rev. 3.00

CUCB_AscRcvReady
If the COM module invokes calls the CUCB_AscRcvReady()function, the requested
amount of data is ready in FIFO (data from the serial interface defined in the comId
parameter).

The data has been previously requested with the CUL_AscRcv()function.

The CUCB_AscRcvReady()function can be invoked before, after or while invoking the
CUL_AscRcv()function. The task context is always that of CUT.

The CUCB_AscRcvReady()function may invoke all CUT library functions.

These actions are also permitted:

 the increase of mDataMax, and/or
 Reconfiguring mDataIdx and mDataMax by the *.pBuf data assigned to comId (for

further reading)
The structure element of CUCB_ASC_BUFFER.mDataIdx has the value of
CUCB_ASC_BUFFER.mDataMax.

Function Prototype:

void CUCB_AscRcvReady(udword comId)

Parameter:

The function has the following parameter:

Parameter Description

comId Field bus interface (RS485, RS 232)
1 = FB1,
2 = FB2,
3 = FB3,
4 = FB4_SERVICE

Table 283: Parameter

Restrictions:

If the memory area (defined by CUCB_ASC_BUFFER) is not located in the CUT data
segment, CUIT and CUT are terminated.

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 295 of 344

CUL_AscSend
The CUCB_AscSend function sends the data set defined by the parameter pBuf via the
serial interface comId.

The defined data set must be ≥ 1 byte and ≤ 1kByte.

After data have been sent, the CUCB_AscSendReady()function is invoked. If an error
occurs,

 it is not be sent and
 the CUCB_AscSendReady()function will not be invoked.

Function Prototype:

Udword CUL_AscSend(udword comId, CUCB_ASC_BUFFER *pBuf)

Parameter:

The function has the following parameters:

Paramet
er

Description

comId Field bus interface (RS485, RS 232)
1 = FB1,
2 = FB2,
3 = FB3,
4 = FB4_SERVICE

pBuf Defines the data amount to be sent

Table 284: Parameter

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

CUL_OKAY If data sending was successfully

CUL_WOULDBLOCK If a message previously sent has not been sent yet

CUL_NOT_OPENED If the interface was not opened by the CUT

CUL_INVALID_PARAM Incorrect parameters or parameter combinations transmitted.

CUL_DEVICE_ERROR Other errors

Table 285: Return Value

Restrictions:

If the memory area (defined by CUCB_ASC_BUFFER) is not located in the CUT data
segment, CUIT and CUT are terminated.

11 ComUserTask Communication

Page 296 of 344 HI 801 101 E Rev. 3.00

CUCB_AscSendReady
If the COM invokes the CUCB_AscSendReady()function, data is completely sent with the
CUCB_AscSend()function via the serial interface.

The task context is always that of CUT. The CUCB_AscSendReady()function may invoke
all CUT library functions.

Function Prototype:

void CUCB_AscSendReady(udword comId)

Parameter:

The function has the following parameter:

Parameter Description

comId Field bus interface (RS485, RS 232)
1 = FB1,
2 = FB2,
3 = FB3,
4 = FB4_SERVICE

Table 286: Parameter

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 297 of 344

11.5.7 UDP/TCP Socket IF
A maximum of 8 sockets can simultaneously be used irrespective of the used protocol.

The physical connection runs over the 10/100BaseT Ethernet interfaces of the controller.

CUL_SocketOpenUdpBind
The CUL_SocketOpenUdpBind()function creates a socket of UDP type and binds the
socket to the selected port.

The binding address is always INADDR_ANY, i.e., all messages for UDP/port addressed to
the COM module are received. Sockets are always run in non-blocking mode, i.e., this
function does not block.

Function Prototype:

dword CUL_SocketOpenUdpBind(uword port, uword *assigned_port_ptr)

Parameter:

The function has the following parameters:

Parameter Description

port An available port number, not occupied by the COM >= 0.
If the port parameter = 0, the socket is bound to the first available
port.

assigned_port_ptr Address to which the bounded port number should be copied, if the
port parameter = 0 or NULL if not.

Table 287: Parameter

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

Socket number Socket number assigned to UDP if > 0
Error codes are < 0

CUL_ALREADY_BOUND Impossible binding to a port for UDP

CUL_NO_MORE_SOCKETS No more resources are available for socket

CUL_SOCK_ERROR Other socket errors

Table 288: Return Value

Restrictions:

If the CUT does not possess assigned_port_ptr then CUT/CUIT are terminated.

11 ComUserTask Communication

Page 298 of 344 HI 801 101 E Rev. 3.00

CUL_SocketOpenUdp
The CUL_SocketOpenUdp()function creates a socket of UDP type without binding to a
port. Afterwards, messages can only be sent, but not received via the socket.

Function Prototype:

dword CUL_SocketOpenUdp (void)

Parameter:

None

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

Socket number Socket number assigned to UDP if > 0
Error codes are < 0

CUL_NO_MORE_SOCKETS No more resources are available for socket

CUL_SOCK_ERROR Other socket errors

Table 289: Return Value

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 299 of 344

CUL_NetMessageAlloc
The CULMessageAlloc()function allocates message memory for using

 CUL_SocketSendTo() with UDP and
 CUL_SocketSend() with TCP

A maximum of 10 messages can be simultaneously used in CUT.

Function Prototype:

void *CUL_NetMessageAlloc(udword size, ubyte proto)

Parameter:

The function has the following parameters:

Parameter Description

size Required memory size in bytes; it must be ≥ 1 byte and ≤ 1400 bytes

proto 0 = TCP
1 = UDP

Table 290: Parameter

Return Value:

Buffer address to which the data to be sent must be copied. Memory ranges must never be
written outside the allocated area. There are no ranges for the used transmission protocols
(EtherNet/IP/UDP or TCP).

Restrictions:

If no more memory resources are available or if the parameter size is too big or proto > 1,
CUT and CUIT are terminated.

11 ComUserTask Communication

Page 300 of 344 HI 801 101 E Rev. 3.00

CUL_SocketSendTo
The CUL_SocketSendTo()function sends the message previously allocated and filled
with the CUL_NetMessageAlloc()function as UDP package to the destIp/destPort target
address.

After the message has been sent, the pMsg message memory is released automatically.

Whenever messages are sent, firstly the message memory must be allocated with the
CULMessageAlloc()function.

Function Prototype:

dword CUL_SocketSendTo(dword socket,
void *pMsg,
udword size,
udword destIp,
uword destPort)

Parameter:

The function has the following parameters:

Parameter Description

Socket Socket created with CUL_SocketOpenUdp()

pMsg UDP user data memory previously reserved with CUL_NetMessageAlloc()

Size Memory size in bytes, it must be ≤ than the allocated memory

destIp Target address != 0, also 0xffffffff is allowed as broadcast

destPort Target port != 0

Table 291: Parameter

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

CUL_OKAY Message was sent successfully

CUL_NO_ROUTE No routing available to obtain destIp

CUL_WRONG_SOCK Wrong socket type or socket not available

CUL_SOCK_ERROR Other socket errors

Table 292: Return Value

Restrictions:

If the CUT does not possess the pMsg message or if the size of pMsg is too high, CUT and
CUIT are terminated.

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 301 of 344

CUCB_SocketUdpRcv
The COM invokes the CUCB_SocketUdpRcv() function if data from the socket is available.
In callback, data must be copied from *pMsg to CUT data, if required. After the function
return, no access to *pMsg is allowed.

Function Prototype:

void CUCB_SocketUdpRcv(dword socket,
void *pMsg,
udword packetLength,
udword dataLength)

Parameter:

The function has the following parameters:

Parameter Description

socket Socket created with CUL_SocketOpenUdp()

pMsg pMsg points to the UDP package begin including the Ethernet header.
The transmitter of the message can be identified via the Ethernet
header.

packetLength The length of the package is stored in packetLength, included the length
of the header.

dataLength The length of the UDP user data part is stored in dataLength.

Table 293: Parameter

11 ComUserTask Communication

Page 302 of 344 HI 801 101 E Rev. 3.00

CUL_NetMessageFree
The CUL_NetMessageFree()function releases the message previously allocated with
CUL_NetMessageAlloc().

This function is usually not required since invoking the CUL_SocketSendTo()function
results in an automatic release.

Function Prototype:

void CUL_NetMessageFree(void *pMsg)

Parameter:

The function has the following parameter:

Parameter Description
pMsg Memory reserved by CUL_NetMessageAlloc()

Table 294: Parameter

Restrictions:

If the CUT does not possess the pMsg message, CUT and CUIT are terminated.

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 303 of 344

CUL_SocketOpenTcpServer
The CUL_SocketOpenServer()function creates a socket of type TCP and binds the
socket to the selected port.

The address for binding is always INADDR_ANY. Additionally, the COM is requested to
perform a listen on the stream socket. Sockets are always running in non-blocking mode,
i.e., this function does not block.

For further information on how to use the socket, refer to CUCB_SocketTryAccept() and
CUL_SocketAccept().

Function Prototype:

dword CUL_SocketOpenTcpServer(uword port, udword backlog)

Parameter:

The function has the following parameters:

Parameter Description

port Port number not occupied by the COM > 0

backlog Max. number of waiting connections for socket

Table 295: Parameter

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

Socket number Socket number already assigned to UDP if > 0
Error codes are < 0

CUL_ALREADY_BOUND Binding to a port/proto not possible

CUL_NO_MORE_SOCKETS No more resources are available for socket

CUL_SOCK_ERROR Other socket errors

Table 296: Return Value

Restrictions:

If successfully one socket is used.

11 ComUserTask Communication

Page 304 of 344 HI 801 101 E Rev. 3.00

CUCB_SocketTryAccept
The COM invokes the CUL_SocketTryAccept()function if a TCP connection request is
present.

This request can be used to create a socket with the CUL_SocketAccept()function.

Function Prototype:

void CUCB_SocketTryAccept(dword serverSocket)

Parameter:

The function has the following parameter:

Parameter Description

serverSocket Socket previously created by CUL_SocketOpenTcpServer().

Table 297: Parameter

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 305 of 344

CUL_SocketAccept
The CUL_SocketAccept()function creates a new socket for the connection request
previously signalized with CUCB_SocketTryAccept().

Function Prototype:

dword CUL_SocketAccept(dword serverSocket,
udword *pIpAddr,
uword *pTcpPort)

Parameter:

The function has the following parameters:

Parameter Description

serverSocket serverSocket signalized with CUCB_SocketTryAccept()

pIpAddr Address to which the IP address of the peer should be copied or 0 if not

pTcpPort Address to which the TCP port number of the peer should be copied or 0 if
not

Table 298: Parameter

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

Socket if > 0, new created socket

CUL_WRONG_SOCK Wrong socket type or socket not available

CUL_NO_MORE_SOCKETS No more socket resources are available

CUL_SOCK_ERROR Other socket error

Table 299: Return Value

Restrictions:

If the CUT does not possess the messages pIpAddr and pTcpPort, CUT and CUIT are
terminated.

11 ComUserTask Communication

Page 306 of 344 HI 801 101 E Rev. 3.00

CUL_SocketOpenTcpClient
The CUL_SocketOpenTcpClient()function creates a socket of type TCP with free local
port and orders a connection to destIp and destPort. Sockets are always run in non-
blocking mode, i.e., this function does not block. The
CUCB_SocketConnected()function is invoked as soon as the connection has been
established.

Function Prototype:

dword CUL_SocketOpenTcpClient(udword destIp, uword destPort)

Parameter:

The function has the following parameters:

Parameter Description

destIp IP address of the communication partners

destPort Port number of the communication partners

Table 300: Parameter

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

Socket number if > 0; error codes are < 0

CUL_NO_MORE_SOCKETS No more resources are available for socket

CUL_NO_ROUTE No routing available to reach destIp

CUL_SOCK_ERROR Other socket error

Table 301: Return Value

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 307 of 344

CUCB_SocketConnected
The CUCB_SocketConnected()function is invoked by the COM module if a TCP
connection was established with the CUL_SocketOpenTcpClient()function.

Function Prototype:

void CUCB_SocketConnected(dword socket, bool successfully)

Parameter:

The function has the following parameters:

Parameter Description

socket Socket previously created and instructed by
CUL_SocketOpenTcpClient()

successfully TRUE if the connection attempt was successfully, otherwise FALSE

Table 302: Parameter

11 ComUserTask Communication

Page 308 of 344 HI 801 101 E Rev. 3.00

CUL_SocketSend
The CUL_SocketSend()function sends the message allocated and filled with the
CUL_NetMessageAlloc()function as TCP package.

After the message has been sent, the pMsg message memory is released automatically.

Whenever messages are sent, firstly the message memory must be allocated with the
CULMessageAlloc()function.

Function Prototype:

dword CUL_SocketSend(dword socket,
void *pMsg,
udword size)

Parameter:

The function has the following parameters:

Parameter Description

socket Socket created by
CUL_SocketAccept()/CUL_SocketOpenTcpClient()

pMsg TCP user data memory previously reserved with
CUL_NetMessageAlloc()

size Memory size in bytes, it must be ≤ than the allocated memory

Table 303: Parameter

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

CUL_OKAY Message was sent successfully

CUL_WRONG_SOCK Wrong socket type or socket not available

CUL_WOULD_BLOCK Message cannot be sent, otherwise the socket would be blocked

CUL_SOCK_ERROR Other socket error

Table 304: Return Value

Restrictions:

If the CUT does not possess the message pMsg or if the size of pMsg is too high, CUT and
CUIT are terminated.

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 309 of 344

CUCB_SocketTcpRcv
The CUCB_SocketTcpRcv()function is invoked by the COM module if socket user data
are placed.

After quitting the function CUCB_SocketTcpRcv(), *pMsg must no longer be accessed.

If user data are also required outside the CUCB_SocketTcpRcv()function, it must be
copied from *pMsg in an area created ad hoc.

i
If the TCP connection is closed asynchronously (after an error or due to a request from the
other side), the CUCB_SocketTcpRcv()function with dataLength = 0 is selected.
The call signalized to CUT that the socket must be closed to re-synchronized
communication.

Function Prototype:

void CUCB_SocketTcpRcv(dword socket,
void *pMsg,
udword dataLength)

Parameter:

The function has the following parameters:

Parameter Description

socket Socket used to receive the user data.

pMsg The pMsg parameter points to the user data begin without Ethernet /IP
/TCP header.

dataLength Length of the user data in bytes

Table 305: Parameter

11 ComUserTask Communication

Page 310 of 344 HI 801 101 E Rev. 3.00

CUL_SocketClose
The CUL_SocketClose()function closes a socket previously created.

Function Prototype:

dword CUL_SocketClose(dword socket)

Parameter:

The function has the following parameter:

Parameter Description

socket Socket previously created

Table 306: Parameter

Return Value:

An error code (udword) is returned.

The error codes are defined in the cut.h header file.

Error Code Description

CUL_OKAY Socket closed and one socket resource free again.

CUL_WRONG_SOCK Socket not available

Table 307: Return Value

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 311 of 344

11.5.8 Timer-IF

CUL_GetTimeStampMS
The CUL_GetTimeStampMS()function provides a millisecond tick. This tick is suitable for
implementing an own timer in CUT/CUIT. The counter is derived from the quartz of the
COM processor and has therefore the same precision.

Function Prototype:

udword CUL_GetTimeStampMS(void)

CUL_GetDateAndTime
The CUL_GetDateAndTime()function provides the seconds since the 1st January 1970,
00:00 to the *pSec memory and the milliseconds to the *pMsec memory. The values are
compared with the safe CPU and, depending on the configuration, they can be externally
synchronized via SNTP (see Chapter 9).

The values for CUL_GetDateAndTime()should not be used for time measurement, timer
or the like since they can be provided by the synchronization or by the user during
operation.

Function Prototype:

void CUL_GetDateAndTime(udword *pSec, udword *pMsec)

Restrictions:

If the memory of pSec or pMsec are not allocated in the CUT data segment, CUT and CUIT
are terminated.

11 ComUserTask Communication

Page 312 of 344 HI 801 101 E Rev. 3.00

11.5.9 Diagnosis
The CUL_DiagEntry()function records an event in the COM short time diagnosis that
can be read out using the PADT.

Function Prototype:

void CUL_DiagEntry(udword severity,
udword code,
udword param1,
udword param2)

Parameter:

The function has the following parameters:

Parameter Description

severity It is sued to classify events
0x45 ('E') == error,
0x57 ('W') == warning,
0x49 ('I') == information

code The user defines the parameter code with an arbitrary number for the
corresponding events. If the event occurs, the number is displayed in the
diagnosis.

param1,
param2

Additional information on the event

Table 308: Parameter

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 313 of 344

11.6 Installing the Development Environment
This chapter describes how to install the development environment and create a
ComUserTask.

The development environment is contained in the installation CD (see also chapter 11.2).

11.6.1 Installing the Cygwin Environment
The Cygwin environment is required since the GNU C compiler tools only runs under the
Cygwin environment.

Cygwin environment must be installed under Windows 2000/XP/Vista.

i
Observe the installation requirements described in Chapter 11.2. Deactivate the virus
scanner on the PC on which Cygwin should be installed to avoid problems when installing
Cygwin.

Perform the following steps to install the Cygwin environment:

Start the setup program for installing Cygwin:

1. Copy the Cygwin installation archive cygwin_2005-03-11 from the installation CD to the
local hard disk (e.g., drive C:\).

2. Open the Cygwin index in Windows Explorer
C:\ cygwin_2005-03-11.

3. Double-click the setup.exe file to start the Cygwin installation.
4. Click the Next button to start the setup.

Figure 83: Cygwin Setup Dialog Box

11 ComUserTask Communication

Page 314 of 344 HI 801 101 E Rev. 3.00

The Disable Virus Scanner dialog box appears if the virus scanner was not
deactivated.

Follow these steps to deactivate the virus scanner during the installation of Cygwin.

i
Deactivate the virus scanner before installing Cygwin since, depending on the virus
scanner in use, the warning dialog box could not appear although the virus scanner is
running.

1. Select Disable Virus Scanner to prevent potential problems during the installation due
to the virus scanner.

2. Click the Next button to confirm.

Select the installation source in the Choose Installation Type dialog box:

1. Select Install from Local Directory as installation source.
2. Click the Next button to confirm.

In the Choose Installation Directory dialog box, select the installation target directory
for Cygwin:

1. Enter the directory in which Cygwin should be installed.
2. Accept all the defaults of the dialog box.
3. Click the Next button to confirm.

In the Select Local Package Directory dialog box, select the Cygwin installation
archive.

1. In the Local Package Directory field, enter the name of the Cygwin installation archive
containing the installation files

2. Click the Next button to confirm.

In the Select Packages dialog box, select all installation packages:

1. Select the Curr radio button.
2. In the view box, slowly click the installation option next to All until Install is displayed for

a complete installation of all packages (approx. 1.86 GB memory requirements).

i
Make sure that Install is placed behind each package.
If the packages are not completely installed, important functions might be missing for
compiling the CUT C code!

3. Click the Next button to confirm.

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 315 of 344

Figure 84: Select Packages Cygwin Setup Dialog Box

Perform the following steps to complete the Cygwin installation:

1. Select Entry in the Start Menu.
2. Select Desktop Icon.
3. Click the Finish button to complete the Cygwin installation.

Cygwin Commands Description

cd (directory name) Change directory

cd .. Move to parent directory

ls -l Display all files of a directory

help Overview of bash shell commands

Table 309: Commands in Cygwin (Bash Shell)

11.6.2 Installing the GNU Compiler

Perform the following steps to install the GNU Compiler:

1. In Windows Explorer, open the directory of the installation CD.
2. ᅠDouble-click gcc-ppc-v3.3.2_binutils-v2.15.zip.
3. Extract all files in the Cygwin directory (e.g. C:\cygwin\…).

The GNU compiler is unpacked in the gcc-ppc subdirectory.
4. Set the environment variables in the system control:

11 ComUserTask Communication

Page 316 of 344 HI 801 101 E Rev. 3.00

- Use the Windows start menu Settings->System Control->System to open the
system properties.

- Select the Advanced tab.
- Click the Environment Variables button.
- Select the Path system variable in the System Variables box and extend the

system variable with C:\cygwin\gcc-ppc\bin.

Copy the cut_src folder from the installation CD to the home directory.
The cut_src folder contains all the "include" and "lib" directories required for creating a
ComUserTask. The cut_cbf.c source file is located by default in ...\cut_src\cutapp\ directory.

Figure 85: Cygwin Structure Tree

i
If the home directory was not created automatically, create it with Windows Explorer (e.g.,
C:\cygwin\home\User1).
To create another home directory for cygwin bash shell, add the set Home command to
the cygwin.bat batch file.

@echo off

C:

chdir C:\cygwin\bin

set Home=C:\User1

bash --login -i

Figure 86: Cygwin.bat Batch File

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 317 of 344

11.7 Creating New CUT Projects
This chapter shows how to create a new CUT project and specifies which files must be
adapted.

i
The example cut CUT project located on the installation CD is fully adapted.

For creating new CUT projects, HIMA recommends to create a new subdirectory of
...\cut_src\ for each CUT project.

Example:

As a test, create the example cut directory, name the C source example_cut.c, the ldb file
created in the make directory is named example_cut.ldb.

Create the folder example_cut for the new ComUserTask.

Figure 87: Cygwin Structure Tree

1. Copy the files

- cutapp.c
- cutapp.mke
- makefile

from the directory cutapp in the directory example_cut.
2. The files must be renamed using loadable names (e.g., cutapp in example_cut).

Figure 88: C Code File in the example_cut Folder

As described in the following chapters, perform all changes to .mke file and makefile for
every new project.

11 ComUserTask Communication

Page 318 of 344 HI 801 101 E Rev. 3.00

11.7.1 CUT Makefiles
Configuration of CUT makefiles for different source files and ldb files.

As described in the following chapters, a total of three makefiles must be adapted.

Makefile with ".mke" Extension
The .mke file is located in the corresponding source code directory, e.g.,
cut_src\example_cut\example_cut.mke.

Figure 89: .mke File in the example_cut Folder

Change the mke file as described below:

1. The module variable must have the same loadable name as the corresponding .mke file
(e.g., example_cut).

2. One or several C files required for creating the target code (loadable file) are assigned
to the c_sources variable .

make file (DOS/NT)
$Id: cutapp.mke 58869 2005-10-11 12:35:46Z es_fp $

assign name of module here (e.g. nl for NetworkLayer)
module= example_cut

assign module sources here
sources=

c_sources= $(module).c
asm_sources=

Figure 90: .mke File Starting with Line 1

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 319 of 344

Makefile
The makefile file is located in the corresponding source code directory,
e.g., cut_src\example_cut\makefile.

Figure 91: makefile in the example_cut Folder

Change the makefile file as described below:

1. Drag the include line for the .mke file upwards and enter the current name for the the
.mke file.

2. Expand the make call with the two variables SUBMOD_DIRS and CUT_NAME.

all_objects:

include example_cut.mke

cut:
$(MAKE) -C ../make elf SUBMOD_DIRS=cut_src/$(module) CUT_NAME=$(module)

all_objects: $(c_objects) $(asm_objects) $(objects)

Figure 92: makefile Starting with Line 34

Makefile with the "makeinc.inc.app" Extension
The only change made to this and all the following CUT projects is that the name of the
CUT loadable is made changeable via a make variable.

The makeinc.inc.app file is located in the cut_src directory
e.g., cut_src\makeinc.inc.app.

Figure 93: makeinc.inc.app file in the example_cut Folder

11 ComUserTask Communication

Page 320 of 344 HI 801 101 E Rev. 3.00

Change the makeinc.inc.app file as described below:

1. Expand the file with the CUT_NAME variable.

all: lib$(module).$(LIBEXT)
@echo 'did make for module ['lib$(module).$(LIBEXT)']'

lib$(module).$(LIBEXT): $(objects) $(c_objects) $(asm_objects) $(libraries)

SUBMOD2_LIBS=$(foreach lib,$(SUBMOD_LIBS),../../$(lib))

CUT_NAME=cut

makeAllLibs:
$(MAKE) -C ../../cut_src cut_src

makeLoadable:
@echo; \
BGTYPE=" $(CUT_NAME)"; \
if [! -f $$BGTYPE.map] ; then \
echo "Error: MAP-Datei $$BGTYPE.map existiert nicht"; \
exit 1; \
fi; \
OS_LENGTH=$$(gawk '/___OS_LENGTH/ {print substr($$1,3,8)}' $$BGTYPE.map); \
echo; \
$(OBJCOPY) --strip-all --strip-debug -O binary $$BGTYPE.elf $$BGTYPE.bin;\
echo; \
echo "Building C3-Loadable-Binary ..."; \
$(MCRC) $$BGTYPE.bin 0 $$OS_LENGTH $$OS_LENGTH $$BGTYPE.ldb; \
echo; \

$(CUT_NAME).elf: makeAllLibs $(SUBMOD2_LIBS)

elf:
@echo; test -f section.dld && $(MAKE) $(CUT_NAME).elf && $(MAKE) makeLoadable \
|| { echo "ERROR: Wrong subdir. Please invoke elf target only from make/ subdirectory."
&& echo && false ; } ;

end of file: makeinc.inc

Figure 94: makeinc.inc.app Starting with Line 247

11.7.2 Adapting C Source Codes

Perform the following steps to open the source code file:

1. Open the project directory cut_src\example_cut that has been created and configured in
the previous steps.

2. Use an editor (e.g., Notepad) to open the C source code file with the extension .c.

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 321 of 344

Configure Input and Output Variables

Perform the following steps to configure the input and output variables in the source
code file:

1. The data size of the variables that should be created in the SILworX Output Variables
tab must be set in the CUT_PDI[X] array of the source code file.

2. The data size of the variables that should be created in the SILworX Data Inputs tab
must be set in the CUT_PDO[X] array of the source code file.

Start Function in CUT
The void CUCB_TaskLoop (udword mode)C function is the start function and is
cyclically invoked by the user program.

Example Code "example_cut.c"
The following C code copies the value from the CUT_PDI[0] input to the CUT_PDO[0]
output and returns the value unchanged to the SILworX user program.

Note The C code example_cut.c is located on the installation CD.

Figure 95: Resource Structure Tree

11 ComUserTask Communication

Page 322 of 344 HI 801 101 E Rev. 3.00

Figure 96: C Code example_cut.c

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 323 of 344

Creating Executable Codes (ldb file)

Perform the following steps to create the executable code (ldb file):

1. Start Cygwin Bash Shell.
2. Move to the directory /cut_src/example_cut/.
3. Use the command make cut to start the code generation.

The cut.ldb binary file located in the /cut_src/make/ directory is generated
automatically.

4. If CRC32 was generated, also the executable code was generated (see red marking in
Figure 97).

Figure 97: Cygwin Bash Shell

This executable code (ldb file) must eb loaded in the ComUserTask, see Chapter 11.7.3.

11 ComUserTask Communication

Page 324 of 344 HI 801 101 E Rev. 3.00

11.7.3 Implementing the ComUserTask in the Project
Perform the following steps in SILworX to integrate the ComUserTask into the project:

Creating the ComUserTask

To create a new ComUserTask

1. In the structure tree, open Configuration, Resource, Protocols.
2. On the context menu for protocols, click New, ComUserTask to add a new

ComUserTask.
3. Right-click the ComUserTask, click Properties and select the COM Module.
 Accept the default settings for the first configuration.

i
Only one ComUserTask per resource may be created.

Loading Program Code into the Project

To load a ComUserTask into the project

1. In the structure tree, open Configuration, Resource, Protocols.
2. Right-click ComUserTask, then click Load User Task. Open the directory

.../cut_src/make/
3. Select the ldb file that should be processed in the ComUserTask.

i
Different versions of the ldb file can be integrated by reloading the executable code (ldb
file). The correctness of the ldb file's content is not checked when loading. The ldb file is
then compiled in the project together with the resource configuration and can be loaded into
the controller. If the ldb file is changed, the project must be recompiled and reloaded.

Connecting Variables to CUT
The user can define a not safety-related process communication between the safe CPU
and the not safe COM (CUT). A maximum of 16-kByte data can be exchanged per
direction.

Create the following global variables:

Variable Type

COM_CPU UINT

CPU_COM UINT

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 325 of 344

Connecting Process Variables

Process Variables in the ComUserTask

1. Right-click ComUserTask, then click Edit.
2. In the Edit dialog box, select the Process Variables tab.

Output Variables (CPU->COM)

The Output Variables tab contains the variables that should be transferred from the CPU
to the COM module.

Name Type Offset Global Variable
CPU_COM UINT 0 CPU_COM

Table 310: Output Variables (CPU->COM)

1. Drag the global variables to be sent from the Object Panel onto the Output Variables
tab.

2. Right-click anywhere in the Output Variables area to open the context menu.
3. Click New Offsets to re-generate the variable offsets.

Input Variables (COM->CPU)

The Input Variables tab contains the variables that should be transferred from the COM to
the CPU module.

Name Type Offset Global Variable
COM_CPU UINT 0 COM_CPU

Table 311: Input Variables(COM->CPU)

1. Drag the global variables to be received from the Object Panel onto the Input Variables
area.

2. Right-click anywhere in the the Input Variables area to open the context menu.
3. Click New Offsets to re-generate the variable offsets.

To verify the ComUserTask configuration

1. In the structure tree, select Configuration, Resource, Protocols, ComUserTask.

2. Right-click Verification to verify the CUT configuration.
3. Thoroughly verify the messages contained in the logbook and correct potential errors.

11 ComUserTask Communication

Page 326 of 344 HI 801 101 E Rev. 3.00

Creating the SILworX User Program

To create the SILworX user program

1. In the structure tree, open Configuration, right-click Resource, then select Edit.
2. Drag the global variables COM_CPU and CPU_COM from the Object Panel to the

drawing area.
3. Create the user program as specified in the following figure.

Figure98: SILworX Program Editor

To configure the schedule interval [ms]

1. Right-click ComUserTask, then click Properties.
2. In the Schedule Interval [ms] input box, specify in which intervals the ComUserTask

should be invoked.

i
Use the resource's user program to recompile the ComUserTask configuration and load it
into the controller. The new configuration can only be used for communicating with the
HIMax system after this step is completed

To check the ComUserTask with the online test

1. In the structure tree, select Configuration, Resource, Program.
2. Right-click Program and select Online. Log in to the system.

I

Figure 99: SILworX Online Test

Function of the SILworX user program:

The SILworX user program adds the value 1 to the signal COM_CPU (data inputs) and
transmits the result to the signal CPU_COM (data outputs).

With the next CUT call (schedule interval [ms]), the signal CPU_COM is transmitted to the
CUT function (see example code in Chapter 11.7.2).

The ComUserTask receives the signal CPU_COM and returns the value unchanged with
the signal COM_CPU.

Communication 11 ComUserTask

HI 801 101 E Rev. 3.00 Page 327 of 344

11.7.4 Faults while Loading a Configuration with CUT
Run Time Problems (e.g., ComUserTask in infinite loop):

Reason for run time problems:

Programming a loop, which runs for a long time, in the corresponding CUT source code
results in a “deadlock“ of the COM processor.

As a consequence, no connection can be established to the controller and the resource
configuration can no longer be deleted.

Solution: Reset the HIMax communication module or the HIMatrix controller:

 In the Online View associated with the Hardware Editor, use the Maintenance/Service,

Module (Restart) function to reset the communication module (or the reset push-button
to reset the HIMatrix system, see the controller's data sheet).

 Create a new CUT (without run time errors, endless loops).
 Load the CUT (ldb file) into the project.
 Generate the code.
 Load the code into the controller.

12 General Communication

Page 328 of 344 HI 801 101 E Rev. 3.00

12 General

12.1 Configuring the Function Blocks
The fieldbus protocols and the corresponding function blocks operate on the COM module
of the HIMax controller. Therefore, the function blocks must be created in the SILworX. To
do this, open Configuration, Resource, Protocols... in the structure tree.

To control the function blocks on the COM module, function blocks can be created in the
SILworX user program (see Chapter 12.1.1). These can be used as standard function
blocks.

Common variables are used to connect the function blocks in the SILworX user program to
the corresponding function blocks in the SILworX structure tree. These must be created
beforehand using the Variable Editor.

12.1.1 Purchasing Function Block Libraries
The function block libraries for PROFIBUS DP and TCP Send/Receive must be added to
the project using the Restore... function (from the context menu for the project).

The function block libraries are available upon request from HIMA support.

Tel: +49 (0)6202-709 -185

 -259

 -261

E-mail: support@hima.com

12.1.2 Configuring the Function Blocks in the User Program
Drag the required function blocks onto the user program. Configure the inputs and outputs
as described for the individual function block.

Upper Part of the Function Block

The upper part of the function block corresponds to the user interface that the user program
uses for controlling it.

The variables used in the user program are connected here. The prefix "A" means
Application.

Figure 100: PNM_MSTST Function Block (Upper Part)

Communication 12 General

HI 801 101 E Rev. 3.00 Page 329 of 344

Lower Part of the Function Block

The function block’s lower part represents the connection to the function block (in the
SILworX structure tree).

The variables that must be connected to the function block in the SILworX structure tree are
connected here. The prefix "F" means "Field".

Figure 101: PNM_MSTST Function Block (Lower Part)

12.1.3 Configuring the Function Blocks in the SILworX Structure Tree

To configure the function block in the SILworX structure tree

1. In the structure tree, open Configuration, Resource, Protocols, e.g., PROFIBUS
Master.

2. Right-click Function Blocks , and then click New.
3. In the SILworX structure tree, click the suitable function block.

Figure 102: Choosing Function Blocks

12 General Communication

Page 330 of 344 HI 801 101 E Rev. 3.00

The inputs of the function block (checkmark in the Input Variables column) must be
connected to the same variables that are connected in the user program to the F_Outputs
of the function block.

The outputs of the function block (no checkmark in the Input Variables column) must be
connected to the same variables that are connected in the user program to the F_Inputs of
the function block.

Figure 103: System Variables of the MSTAT Function Block

Communication 12 General

HI 801 101 E Rev. 3.00 Page 331 of 344

12.2 Maximum Communication Time Slice
The maximum communication time slice is the time period in milliseconds (ms) und per
CPU cycle assigned to the processor module for processing the communication tasks.
If not all upcoming communication tasks can be processed within one CPU cycle, the whole
communication data is transferred over multiple CPU cycles (number of communication
time slices > 1).

To determine the maximum communication tiem slice

1. All communication protocols are operating (safeethernet and standard protocols).
2. Open the Control Panel and select the Statistics directory in the structure tree.
3. Open Cyc.Async to read the number of communication time slices.
4. Open Time.Async to read the duration of one communication time slice.

i
The number of communication time slices must be = 1 when the maximum reaction times
allowed is calculated (see Chapter 4.7).
The duration of the communication time slice must be set such that the CPU cycle using
the communication time slice cannot exceed the watchdog time specified by the process.

12 General Communication

Page 332 of 344 HI 801 101 E Rev. 3.00

Appendix

Glossary
Term Description
ARP Address Resolution Protocol: Network protocol for assigning the network addresses

to hardware addresses
AI Analog Input
Connector board Connector board for the HIMax module
COM Communication module
CRC Cyclic Redundancy Check
DI Digital Input
DO Digital Output
EMC Electromagnetic Compatibility
EN European Norm
ESD ElectroStatic Discharge
FB Fieldbus
FBD Function Block Diagram
FTA Field Termination Assembly
FTT Fault Tolerance Time
ICMP Internet Control Message Protocol: Network protocol for status or error messages
IEC International Electrotechnical Commission
MAC Address Hardware address of one network connection (Media Access Control)
PADT Programming And Debugging Tool (in accordance with IEC 61131-3),

PC with SILworX
PE Protective Earth
PELV Protective Extra Low Voltage
PES Programmable Electronic System
PFD Probability of Failure on Demand, probability of failure on demand of a safety

function
PFH Probability of Failure per Hour, probability of a dangerous failure per hour
R Read
Rack ID Base plate identification (number)
Non-reactive Supposing that two input circuits are connected to the same source (e.g., a

transmitter). An input circuit is termed "non-reactive" if it does not distort the signals
of the other input circuit.

R/W Read/Write
SB System Bus (Module)
SELV Safety Extra Low Voltage
SFF Safe Failure Fraction, portion of safely manageable faults
SIL Safety Integrity Level (in accordance with IEC 61508)
SILworX Programming tool for HIMax
SNTP Simple Network Time Protocol (RFC 1769)
SRS System.Rack.Slot
SW Software
TMO Timeout
W Write
WD Watchdog
WDT Watchdog Time

Communication Appendix

HI 801 101 E Rev. 3.00 Page 333 of 344

Index of Figures
Figure 1: Dialog Box for Configuring the Processor and COM Modules in SILworX 24
Figure 2: System Structures... 33
Figure 3: Structure for Configuring a Redundant Connection.. 34
Figure 4: Resource Structure Tree... 34
Figure 5: Parameter Values for a safeethernet Connection:... 35
Figure 6: Detail View in the safeethernet Editor.. 35
Figure 7: Redundant Connection between Two HIMax Controllers... 43
Figure 8: Redundant Connection of Two HIMax Controllers using a Line ... 43
Figure 9: safeethernet Connection of Two HIMax Controllers .. 48
Figure 10: safeethernet Connection between One HIMax and One HIMatrix Controller........................ 49
Figure 11: safeethernet Connection in Connection with RIOs .. 49
Figure 12: safeethernet Connection between Two HIMax and One HIMatrix PES 50
Figure 13: safeethernet Connection between Resource A1 in Project A and Resource B1 in Project B 55
Figure 14: Variant: Project A as Local Project ... 56
Figure 15: Variant: Project B as Local Project ... 56
Figure 16: Configuring Communication between SILworX and ELOP II Factory 57
Figure 17: HIMatrix Proxy Resource .. 58
Figure 18: Parameter for a safeethernet Connection to a Proxy Resource .. 59
Figure 19: safeethernet Connection Export .. 60
Figure 20: Importing Connections in ELOP II Factory.. 61
Figure 21: P2P Editor in ELOP II Factory... 61
Figure 22: Assigning Send Signals in ELOP II Factory.. 62
Figure 23: Assigning Receive Signals in ELOP II Factory ... 62
Figure 24: Control Panel for Connection Control ... 63
Figure 25: Structure Tree for the PROFINET IO Controller ... 70
Figure 26: Communication Using PROFINET IO... 82
Figure 27: Communication Using PROFIBUS DP ... 94
Figure 28: HIMax PROFIBUS DP Slave with Modules .. 97
Figure 29: User Data Field ... 100
Figure 30: Verification Dialog Box .. 100
Figure 31: PROFIBUS DP Master Properties .. 101
Figure 32: PROFIBUS DP Slave Properties .. 102
Figure 33: Isochronous PROFIBUS DP Cycle ... 111
Figure 34: Edit User Parameters Dialog Box ... 121
Figure 35: MSTAT Function Block ... 123
Figure 36: RALRM Function Block ... 126
Figure 37: RDIAG Function Block .. 130
Figure 38: RDREC Function Block... 134
Figure 39: SLACT Function Block .. 137
Figure 40: WRREC Function Block .. 140
Figure 41: ACTIVE Auxiliary Function Block.. 143
Figure 42: ALARM Auxiliary Function Block... 144
Figure 43: DEID Auxiliary Function Block .. 145
Figure 44: ID Auxiliary Function Block ... 146
Figure 45: NSLOT Auxiliary Function Block... 147
Figure 46: SLOT Auxiliary Function Block.. 147
Figure 47: STDDIAG Auxiliary Function Block... 148
Figure 48: Communication Using Modbus TCP/IP .. 164
Figure 49: Modbus Network ... 179
Figure 50: Modbus Gateway .. 182
Figure 51: Serial Modbus ... 185
Figure 52: Modbus Telegram ... 185
Figure 53: Connecting a HIMax and a Siemens Controller.. 211
Figure 54: Data Transfer between a HIMax and a Siemens Controller ... 212
Figure 55: List of Variables in the Siemens UDT1 Block ... 213
Figure 56: List of Variables in the Siemens DB1 Function Block... 214
Figure 57: SIMATIC Symbol Editor .. 214
Figure 58: Receive Function Chart... 215
Figure 59: Send Function Chart ... 216

Appendix Communication

Page 334 of 344 HI 801 101 E Rev. 3.00

Figure 60: TCP Connection Properties in SILworX .. 217
Figure 61: Siemens List of Variables.. 226
Figure 62: HIMax List of Variables ... 226
Figure 63: Function Block TCP_Reset ... 228
Figure 64: Function Block TCP_Send .. 231
Figure 65: Function Block TCP_Receive.. 234
Figure 66: Function Block TCP_ReceiveLine... 238
Figure 67: Function Block TCP_ReceiveVar.. 242
Figure 68: Data Packet Structure ... 243
Figure 69: Redundant X-OPC Operation.. 258
Figure 70: Wizard for Installing the X-OPC Server... 259
Figure 71: Wizard for Installing the X-OPC Server... 259
Figure 72: Setting the Class ID of the Second X-OPC Server Manually.. 260
Figure 73: Settings for Starting the X-OPC Server Automatically .. 261
Figure 74: Redundant X-OPC Operation.. 262
Figure 75: Redundant X-OPC Operation.. 263
Figure 76: Detailed View of the safeethernet Connection... 264
Figure 77: Alarm & Event Editor ... 266
Figure 78: Redundant X-OPC Operation.. 267
Figure 79: safeethernet Editor .. 270
Figure 80: Detailed View of the safeethernet Connection... 271
Figure 81: Five Areas of a Scalar Event... 273
Figure 82: Process Data Exchange between CPU and COM (CUT) ... 284
Figure 83: Cygwin Setup Dialog Box.. 313
Figure 84: Select Packages Cygwin Setup Dialog Box.. 315
Figure 85: Cygwin Structure Tree... 316
Figure 87: Cygwin Structure Tree... 317
Figure 88: C Code File in the example_cut Folder... 317
Figure 89: .mke File in the example_cut Folder ... 318
Figure 90: .mke File Starting with Line 1 .. 318
Figure 91: makefile in the example_cut Folder .. 319
Figure 92: makefile Starting with Line 34 ... 319
Figure 93: makeinc.inc.app file in the example_cut Folder .. 319
Figure 94: makeinc.inc.app Starting with Line 247... 320
Figure 95: Resource Structure Tree ... 321
Figure 96: C Code example_cut.c .. 322
Figure 97: Cygwin Bash Shell .. 323
Figure98: SILworX Program Editor... 326
Figure 99: SILworX Online Test ... 326
Figure 100: PNM_MSTST Function Block (Upper Part)... 328
Figure 101: PNM_MSTST Function Block (Lower Part)... 329
Figure 102: Choosing Function Blocks... 329
Figure 103: System Variables of the MSTAT Function Block .. 330

Communication Appendix

HI 801 101 E Rev. 3.00 Page 335 of 344

Index of Tables
Table 1: Additional Valid Manuals 11
Table 2: Standards for EMC, Climatic and Environmental Requirements 14
Table 3: General requirements 14
Table 4: Climatic Requirements 14
Table 5: Mechanical Tests 15
Table 6: Interference Immunity Tests 15
Table 7: Interference Immunity Tests 15
Table 8: Noise Emission Tests 15
Table 9: Review of the DC Supply Characteristics 16
Table 10: Available Standard Protocols 19
Table 11: Protocols on one Communication Module 20
Table 12: Protocols on one Communication Module 20
Table 13: Part Numbers 20
Table 14: Examples of COM Module Part Numbers 21
Table 14: Protocols Available for the HIMax Systems 22
Table 15: Ethernet Interfaces Properties 23
Table 17: Configuration Parameters 26
Table 18: Routing Parameters 27
Table 19: Ethernet Switch Parameters 27
Table 20: VLAN Tab 28
Table 20: Fieldbus Interfaces 29
Table 21: Pin Assignment of D-Sub Connectors FB1 and FB2 for PROFIBUS DP 30
Table 22: Pin Assignment of D-Sub Connectors FB1 and FB2 for Modbus 30
Table 23: Pin Assignment of D-Sub Connectors FB1 and FB2 for RS232 30
Table 24: safeethernet Protocol Parameters 38
Table 25: System Variables Tab in the safeethernet Editor 42
Table 26: Available Ethernet Interfaces 42
Table 27: Combinations for safeethernet Connections 43
Table 28: View Box of the safeethernet connection 64
Table 29: Overview of PROFINET IO Function Blocks 65
Table 30: Equipment and System Requirements for the PROFINET IO Controller. 66
Table 31: PROFINET IO Controller Properties 66
Table 32: PROFINET IO Controller General Properties 69
Table 33: Parameter Tab des PROFINET-IO Device 70
Table 34: Parameter Tab in the Properties Dialog Box for the DAP Module 71
Table 35: Parameter Tab of the I/O PROFINET IO Modules 71
Table 36: Properties Dialog Box for the Input Submodule 72
Table 37: Edit Dialog Box for the Input Submodule 73
Table 38: Properties Dialog Box for the Input Submodule 73
Table 39: Edit Dialog Box for the Output Submodule 74
Table 40: Properties Dialog Box for the Input/Output Submodule 75
Table 41: Edit Dialog Box for the Input/Output Submodule 76
Table 42: Properties Dialog Box for the Application Relation 77
Table 43: Properties Dialog Box for the Alarm CR 78
Table 44: Properties Dialog Box for the Default Input CR 79
Table 45: Edit Dialog Box for the Default Input CR 79
Table 46: Properties Dialog Box for the Default Output CR 80
Table 47: Equipment and System Requirements for the PROFINET IO Controller. 81
Table 48: PROFINET IO Controller Properties 81
Table 49: Variables in the Output Module [01] Out 2 Bytes_1 83
Table 50: Variables in the Output Module [02] Out 8 Bytes_2 84
Table 51: Variables in the Output Module [03] Out 1 Bytes_3 84
Table 52: Variables in the Input Module [04] In 2 Bytes_4 84
Table 53: Variables in the Input Module [05] In 1 Byte_5 84
Table 54: Variables in the Input Module [001] Input 2 Bytes: Module_1 87
Table 55: Variables in the Input Module [002] Input 8 Byte: Module_2 87
Table 56: Variables in the Input Module [003] Input 1 Byte: Module_3 87
Table 57: Variables in the Output Module [004] Out 2 Bytes: Module_4 88
Table 58: Variables in the Output Module [005] Out 1 Bytes: Module_5 88
Table 59: PROFINET IO Device General Properties 89

Appendix Communication

Page 336 of 344 HI 801 101 E Rev. 3.00

Table 60: PROFINET IO Device General Properties 90
Table 61: PROFINET IO Device General Properties 91
Table 62: Equipment and System Requirements 93
Table 63: PROFIBUS DP Master Properties 93
Table 64: Outputs in the HIMA PROFIBUS DP Slave 95
Table 65: Inputs in the HIMA PROFIBUS DP Slave 95
Table 66: Variables of the Input Module [000] DP Input/ELOP Export: 2 Bytes 98
Table 67: Variables of the Input Module [001] DP Input/ELOP Export: 8 Bytes 98
Table 68: Variables of the Input Module [002] DP Input/ELOP Export: 1 Byte 98
Table 69: Variables of the Output Module [003] DP Output/ELOP Import: 2 Bytes 99
Table 70: Variables of the Output Module [004] DP Output/ELOP Import: 1 Byte 99
Table 71: System Variables in the PROFIBUS DP Master 103
Table 72: General Properties for PROFIBUS DP Master 104
Table 73: Timings Tab in the Properties Dialog Box for the PROFIBUS DP Master 106
Table 74: CPU/COM Tab in the Properties Dialog Box for the PROFIBUS DP Master 106
Table 75: Other Properties for the PROFIBUS DP Master 107
Table 76: HIMax Default Values for Token Rotation Time Used with Different Transfer Rates 108
Table 77: Transmission Time for a Character Used with different Transfer Rates 109
Table 78: Elements Required for Calculating the Target Token Rotation Time 109
Table 79: System Variables in the PROFIBUS DP Slave 113
Table 80: Parameters Tab in the PROFIBUS DP Slave 114
Table 81: Groups Tab in the Properties Dialog Box for the PROFIBUS DP Slave 115
Table 82: DP V1 Tab in the Properties Dialog Box for the PROFIBUS DP Slave 115
Table 83: Alarms Tab in the Properties Dialog Box for the PROFIBUS DP Slave 116
Table 84: Data Tab in the Properties Dialog Box for the PROFIBUS DP Slave 116
Table 85: Model Tab in the Properties Dialog Box for the PROFIBUS DP Slave 117
Table 86: Features Tab in the Properties Dialog Box for the PROFIBUS DP Slave 117
Table 87: Baud Rates Tab in the Properties Dialog Box for the PROFIBUS DP Slave 118
Table 88: Acyclic Tab in the Properties Dialog Box for the PROFIBUS DP Slave 118
Table 89: GSD File of the HIMax PROFIBUS DP Slave 119
Table 90: Example: Group 1...4 of the User Data Field 121
Table 91: Example: Group 1...4 of the User Data Field 121
Table 92: Overview of the PROFIBUS DP Function Blocks 122
Table 93: A-Inputs for the MSTAT Function Block 123
Table 94: A-Outputs for the MSTAT Function Block 123
Table 95: F-Inputs for the MSTAT Function Block 124
Table 96: F-Outputs for the MSTAT Function Block 124
Table 97: Input System Variables 124
Table 98: Output System Variables 125
Table 99: A-Inputs for the RDIAG Function Block 126
Table 100: A-Outputs for the RDIAG Function Block 127
Table 101: F-Inputs for the RALRM Function Block 127
Table 102: F-Outputs for the RALRM Function Block 127
Table 103: Input System Variables 128
Table 104: Output System Variables 128
Table 105: Alarm Data 129
Table 106: A-Inputs for the RDIAG Function Block 130
Table 107: A-Outputs for the RDIAG Function Block 130
Table 108: F-Inputs for the RDIAG Function Block 131
Table 109: F-Outputs for the RDIAG Function Block 131
Table 110: Input System Variables 131
Table 111: Output System Variables 132
Table 112: Diagnostic Data 132
Table 113: A-Inputs for the RDREC Function Block 134
Table 114: A-Outputs for the RDREC Function Block 134
Table 115: F-Inputs for the RDREC Function Block 135
Table 116: F-Outputs for the RDREC Function Block 135
Table 117: Input System Variables 135
Table 118: Output System Variables 136
Table 119: Data 136
Table 120: A-Inputs for the SLACT Function Block 137
Table 121: A-Outputs for the SLACT Function Block 138

Communication Appendix

HI 801 101 E Rev. 3.00 Page 337 of 344

Table 122: F-Inputs for the SLACT Function Block 138
Table 123: F-Outputs for the SLACT Function Block 138
Table 124: Input System Variables 139
Table 125: Output System Variables 139
Table 126: A-Inputs for the WRREC Function Block 140
Table 127: A-Outputs for the WRREC Function Block 140
Table 128: F-Inputs for the WRREC Function Block 141
Table 129: F-Outputs for the WRREC Function Block 141
Table 130: Input System Variables 141
Table 131: Output System Variables 142
Table 132: Data 142
Table 133: Overview of the Auxiliary Function Blocks 143
Table 134: Inputs for the ACTIVE Auxiliary Function Block 143
Table 135: Outputs for the ACTIVE Auxiliary Function Block 143
Table 136: Inputs for the ALARM Auxiliary Function Block 144
Table 137: Outputs for the ALARM Auxiliary Function Block 145
Table 138: Inputs for the DEID Auxiliary Function Block 145
Table 139: Outputs for the DEID Auxiliary Function Block 145
Table 140: Inputs for the ID Auxiliary Function Block 146
Table 141: Outputs for the ID Auxiliary Function Block 146
Table 142: Inputs for the NSLOT Auxiliary Function Block 147
Table 143: Outputs for the NSLOT Auxiliary Function Block 147
Table 144: Inputs for the SLOT Auxiliary Function Block 148
Table 145: Outputs for the SLOT Auxiliary Function Block 148
Table 146: Inputs for the STDDIAG Auxiliary Function Block 149
Table 147: Outputs for the STDDIAG Auxiliary Function Block 149
Table 148: Error Codes of the Function Blocks 150
Table 149: View Box of the PROFIBUS Master 153
Table 150: PROFIBUS DP Master State 153
Table 151: Behavior of the PROFIBUS DP Master 153
Table 152: FBx LED (PROFIBUS DP Slave) 154
Table 153: Equipment and System Requirements for the HIMA PROFIBUS DP Slave 155
Table 154: Properties of the HIMA PROFIBUS DP Slave 155
Table 155: System Variables in the PROFIBUS DP Slave 157
Table 156: Slave Properties: General Tab 159
Table 157: View Box of the PROFIBUS DP Slave 160
Table 158: LED FBx (PROFIBUS DP Slave) 161
Table 159: Equipment and System Requirements for the Modbus Master 163
Table 160: Modbus Master Properties According to the standard, a total of three repeaters may be used

such that a maximum of 121 slaves are possible per serial master interface. 163
Table 161: System Variables for the Modbus Master 169
Table 162: General Properties of the Modbus Master 170
Table 163: Parameters of COM/CPU 171
Table 164: Modbus Function Codes 172
Table 165: Request Telegram Read Coils 175
Table 166: Request Telegram Read Discrete Inputs 175
Table 167: Request Telegram Read Holding Registers 175
Table 168: Request Telegram Read Input Registers 176
Table 169: Read Write Holding Register 177
Table 170: Request Telegram Write Multiple Coils 177
Table 171: Request Telegram Write Multiple Registers 178
Table 172: Request Telegram Write Single Coil (05) 178
Table 173: Request Telegram Write Single Register 178
Table 174: System Variables for TCP/UDP Slaves 180
Table 175: Configuration Parameters 181
Table 176: Connection Parameters for the Modbus Gateway 184
Table 177: Status Variables for the Gateway Slave 184
Table 178: Connection Parameters for the Gateway Slave 184
Table 179: Parameters for the Serial Modbus Master 186
Table 180: System Variables in the Modbus Slave 186
Table 181: Connection Parameters for the Modbus Master 187
Table 182: View Box of the Modbus Master 188

Appendix Communication

Page 338 of 344 HI 801 101 E Rev. 3.00

Table 183: FBx LED in the MODBUS Master 189
Table 184: Equipment and System Requirements for the HIMA Modbus Slave 190
Table 185: Properties of the Modbus Slave 190
Table 186: Slots Allowed for the Redundant Modbus Slave COM Modules 192
Table 187: Modbus Slave Properties Set Tab 194
Table 188: View Box of the Modbus Master 195
Table 189: TCP and UDP Ports Tab for HIMA Modbus Slave 196
Table 190: System Variables Tab for the HIMA Modbus Slave 197
Table 191: Modbus Function Codes of the HIMA Modbus Slave 198
Table 192: Register Variables in the Register Area of the Modbus Slave 202
Table 193: Bit Variables in the Bit Area of the Modbus Slave 203
Table 194: Offsets Tab for HIMA Modbus Slave 204
Table 195: Variables Mirrored from the Register Area to the Bit Area 205
Table 196: Variables Mirrored from the Bit Area to the Register Area 206
Table 197: View Box of the Modbus Slave 208
Table 198: Master Data View Box 208
Table 199: FBx LED in the MODBUS Slave 209
Table 200: Error Codes of Modbus TCP/IP 209
Table 201: Equipment and System Requirements for the S&R TCP 210
Table 202: S&R TCP Properties 210
Table 203: HIMax Controller Configuration 212
Table 204: Siemens SIMATIC 300 Configuration 212
Table 205: Global Variables 217
Table 206: Variables for Receive Data 218
Table 207: Variables for Send Data 218
Table 208: System Variables S&R TCP 219
Table 209: S&R TCP General Properties 219
Table 210: Parameters of COM/CPU 220
Table 211: System Variables 221
Table 212: S&R TCP Connection Properties 223
Table 213: Function Blocks for S&R TCP Connections 227
Table 214: A-Inputs for the TCP_Reset Function Block 228
Table 215: A-Outputs for the TCP_Reset Function Block 228
Table 216: F-Inputs for the TCP_Reset Function Block 229
Table 217: F-Outputs for the TCP_Reset Function Block 229
Table 218: Input System Variables 229
Table 219: Output System Variables 230
Table 220: A-Inputs for the TCP_Send Function Block 231
Table 221: A-Outputs for the TCP_Send Function Block 231
Table 222: F-Inputs for the TCP_Send Function Block 232
Table 223: F-Outputs for the TCP_Send Function Block 232
Table 224: Input System Variables 232
Table 225: Output System Variables 233
Table 226: Send Data 233
Table 227: A-Inputs for the TCP_Receive Function Block 234
Table 228: A-Outputs for the TCP_Receive Function Block 235
Table 229: A-Inputs for the TCP_Receive Function Block 235
Table 230: F-Outputs for the TCP_Receive Function Block 235
Table 231: Input System Variables 236
Table 232: Output System Variables 236
Table 233: Receive Variables 236
Table 234: A-Inputs for the TCP_ReceiveLine Function Block 238
Table 235: A-Outputs for the TCP_ReceiveLine Function Block 239
Table 236: F-Inputs for the TCP_ReceiveLine Function Block 239
Table 237: A-Outputs for the TCP_ReceiveLine Function Block 239
Table 238: Input System Variables 240
Table 239: Output System Variables 240
Table 240: Receive Variables 240
Table 241: A-Inputs for the TCP_ReceiveVar Function Block 243
Table 242: A-Outputs for the TCP_ReceiveVar Function Block 244
Table 243: F-Inputs for the TCP_ReceiveVar Function Block 244
Table 244: F-Outputs for the TCP_ReceiveVar Function Block 244

Communication Appendix

HI 801 101 E Rev. 3.00 Page 339 of 344

Table 245: Input System Variables 245
Table 246: Output System Variables 245
Table 247: Receive Variables 245
Table 248: S&R Protocol View Box 247
Table 249: View Box of the Modbus Slave 247
Table 250: Error Codes of the TCP Connection 248
Table 251: Additional Error Codes 249
Table 252: Connection State 249
Table 253: Partner's Connection State 249
Table 254: Equipment and System Requirements for the S&R TCP 250
Table 255: SNTP Client Properties 251
Table 256: SNTP Server Info Properties 252
Table 257: SNTP Server Properties 253
Table 258: Equipment and System Requirements for the X-OPC Server 254
Table 259: X-OPC Server Properties 255
Table 260: Actions Required as a Result of Changes 257
Table 261: Default Values Associated with the Priorities 269
Table 262: State and Timestamp for the Data Access Views 271
Table 263: Parameters for Boolean Events 273
Table 264: Parameters for Scalar Events 275
Table 265: Properties 279
Table 266: Properties 280
Table 267: Edit 280
Table 268: Equipment and System Requirements for the ComUserTask 281
Table 269: ComUserTask Properties 281
Table 270: Abbreviations 282
Table 271: Schedule Interval [ms] 283
Table 272: ComUserTask System Variables 285
Table 273: Input signals of ComUserTask 286
Table 274: ComUserTask Output Signals 286
Table 275: Parameter 288
Table 276: Parameter 290
Table 277: Return Value 290
Table 278: Parameter 291
Table 279: Return Value 291
Table 280: Parameter 292
Table 281: Return Value 293
Table 282: Parameter 294
Table 283: Parameter 295
Table 284: Return Value 295
Table 285: Parameter 296
Table 286: Parameter 297
Table 287: Return Value 297
Table 288: Return Value 298
Table 289: Parameter 299
Table 290: Parameter 300
Table 291: Return Value 300
Table 292: Parameter 301
Table 293: Parameter 302
Table 294: Parameter 303
Table 295: Return Value 303
Table 296: Parameter 304
Table 297: Parameter 305
Table 298: Return Value 305
Table 299: Parameter 306
Table 300: Return Value 306
Table 301: Parameter 307
Table 302: Parameter 308
Table 303: Return Value 308
Table 304: Parameter 309
Table 305: Parameter 310
Table 306: Return Value 310

Appendix Communication

Page 340 of 344 HI 801 101 E Rev. 3.00

Table 307: Parameter 312
Table 308: Commands in Cygwin (Bash Shell) 315
Table 309: Output Variables (CPU->COM) 325
Table 310: Input Variables(COM->CPU) 325

Communication Appendix

HI 801 101 E Rev. 3.00 Page 341 of 344

Index
operating requirements

climatic.. 14
EMC.. 15
ESD protection ... 16

mechanical ... 15
power supply .. 16

part no. ... 20

Appendix Communication

Page 342 of 344 HI 801 101 E Rev. 3.00

HI 801 101 E
© 2009 HIMA Paul Hildebrandt GmbH + Co KG
HIMax und SILworX sind registrierte Warenzeichen von:
HIMA Paul Hildebrandt GmbH + Co KG

Albert-Bassermann-Str. 28
68782 Brühl, Deutschland
Tel. +49 6202 709-0
Fax +49 6202 709-107
HIMax-info@hima.com
www.hima.com

	Table of Contents
	1 Introduction
	Structure and Use of this Manual
	Target Audience
	Formatting Conventions
	1.3.1 Safety Notes
	1.3.2 Operating Tips

	2 Safety
	Operating Requirements
	Climatic Requirements
	 Mechanical Requirements
	EMC Requirements
	ESD Protective Measures

	Residual Risk
	Safety Precautions
	Emergency Information

	3 Product Description
	3.1 Safety-Related Protocol (safeethernet)
	3.2 Standard Protocols
	3.3 Redundancy
	Structure of the HIMax COM Module Part Number
	3.5 Protocol Registration and Activation
	3.6 Ethernet Interfaces
	3.6.1 Ethernet Interfaces Properties
	3.6.2 Configuring the Ethernet Interfaces
	Module
	Routings
	Ethernet Switch
	 VLAN (Port-Based VLAN)
	LLDP
	Mirroring

	3.6.3 Network Ports Used for Ethernet Communication

	3.7 Fieldbus Interfaces
	3.7.1 Pin Assignment of D-SUB Connectors FB1 and FB2

	4 safeethernet
	4.1 What is safeethernet?
	4.2 Configuring a Redundant safeethernet Connection
	Establishing the safeethernet Connection
	Connecting Process Variables

	4.3 safeethernet Editor
	Object Panel

	4.4 Detail View of the safeethernet Editor
	4.4.1 Tab: System Variables

	4.5 Possible safeethernet Connections
	4.5.1 Mono safeethernet Connection (Channel 1)
	4.5.2 Redundant safeethernet Connection (Channel 1 and Channel 2)
	4.5.3 Permitted Combinations

	4.6 safeethernet Parameters
	4.6.1 Maximum Cycle Time (Minimum Watchdog Time) of the HIMax Controller
	4.6.2 Receive Timeout
	4.6.4 Sync/Async
	4.6.5 ResendTMO
	4.6.6 Acknowledge Timeout
	4.6.7 Production Rate
	4.6.8 Queue
	4.7.1 Calculating the Worst Case Reaction Time of Two HIMax Controllers
	4.7.2 Calculating the Worst Case Reaction Time in Connection with One HIMatrix PES
	4.7.3 Calculating the Worst Case Reaction Time with two HIMatrix Controllers or RIOs
	4.7.4 Calculating the Worst Case Reaction Time with Two HIMax and One HIMatrix PES
	4.7.6 Profile I (Fast & Cleanroom)
	4.7.7 Profile II (Fast & Noisy)
	4.7.8 Profile III (Medium & Cleanroom)
	4.7.9 Profile IV (Medium & Noisy)
	4.7.10 Profile V (Slow & Cleanroom)
	4.7.11 Profile VI (Slow & Noisy)

	4.8 Cross-Project Communication
	4.8.1 Variants for Cross-Project Communication
	Local Project A
	Local Project B

	4.9 Cross-Project Communication between SILworX and ELOP II Factory
	4.9.1 Configuring the HIMax in a SILworX Project
	Creating the Proxy Resource
	Connecting the Local Resource to the Proxy Resource
	Connecting Process Variables
	 Exporting the Configuration File from SILworX

	4.9.2 Configuring a HIMatrix in an ELOP II Factory Project
	Assigning ELOP II Factory Process Signals

	4.10 Control Panel (safeethernet)
	4.10.1 View Box (safeethernet Connection)

	5 PROFINET IO
	5.1 PROFINET IO Function Blocks
	5.2 HIMA PROFINET IO Controller
	5.3 System Requirements
	5.4 PROFINET IO Example
	5.4.1 Creating a HIMA PROFINET IO Controller in SILworX
	Configuring the PROFINET IO Device with SILworX
	Identifying the PROFINET IO Device within the Network

	5.5 Menu Function in the PROFINET IO Controller
	5.5.1 Properties

	5.6 Menu Functions for PROFINET IO Device (within the Controller)
	5.6.1 Properties
	Tab Parameter

	5.6.2 DAP Module (Device Access Point Module)
	Tab Parameter

	5.6.3 Input/Output PROFINET IO Modules
	Tab Parameter

	5.6.4 Input Submodule
	Properties
	Tab Parameter
	 Edit

	5.6.5 Submodule Output
	Properties
	Tab Parameter
	 Edit

	5.6.6 Input and Output Submodule
	Properties
	Tab Parameter
	 Edit

	5.6.7 Application Relation
	5.6.8 Alarm CR
	5.6.9 Input CR
	5.6.10 Output CR

	5.7 HIMA PROFINET IO Device
	5.8 System Requirements
	5.9 PROFINET IO Example
	5.9.1 Configuring the PROFINET IO Device in SILworX
	Configuring the PROFINET IO Device Output Modules
	Configuring the PROFINET IO Device Input Modules

	5.9.2 Creating a HIMA PROFINET IO Controller in SILworX
	Creating a HIMA PROFINET IO Device within the Controller
	Creating the HIMax PROFINET IO Controller Modules
	Configuring the PROFINET IO Controller Input Modules
	Configuring the PROFINET IO Controller Output Modules

	5.9.3 Menu Function Properties
	5.9.4 PROFINET IO Modules

	6 PROFIBUS DP
	6.1 HIMA PROFIBUS DP Master
	6.1.1 Creating a HIMA PROFIBUS DP Master

	6.2 PROFIBUS DP: Example
	6.2.1 Configuring the PROFIBUS DP Slave
	6.2.2 Configuring the PROFIBUS DP Master

	6.3 Menu Functions of the PROFIBUS DP Master
	6.3.1 Edit
	6.3.2 Menu Function 'Properties'
	Tab General
	Tab Timings
	Tab CPU/COM
	Tab Other

	6.4 PROFIBUS DP Bus Access Method
	6.4.1 Master/Slave Protocol
	6.4.2 Token Protocol
	6.4.3 Target Token Rotation Time (Ttr)
	6.4.4 Calculating the Target Token Rotation Time (Ttr)

	6.5 Isochronous PROFIBUS DP Cycle (DP V2 and Higher)
	6.5.1 Isochronous Mode (DP V2 and higher)
	6.5.2 Isochronous Sync Mode (DP V2 and higher)
	6.5.3 Isochronous Freeze Mode (DP V2 and higher)

	6.6 Menu Functions of the PROFIBUS DP Slave (in the Master)
	6.6.1 Creating a PROFIBUS DP Slave (in the Master)
	6.6.2 Edit
	6.6.3 Properties
	Tab Parameter
	Tab Groups
	Tab DP V1
	Tab Alarms
	Tab Data
	Tab Model
	Tab Features
	Tab Baud Rates
	Tab Acyclic

	6.7 Importing the GSD File
	6.8 Configuring User Parameters
	6.9 PROFIBUS Function Blocks
	6.9.1 MSTAT Function Block
	6.9.2 RALRM Function Block
	6.9.3 RDIAG Function Block
	6.9.4 RDREC Function Block
	6.9.5 SLACT Function Block
	6.9.6 WRREC Function Block

	6.10 PROFIBUS Auxiliary Function Blocks
	6.10.1 ACTIVE Auxiliary Function Block
	6.10.2 Auxiliary Function Block ALARM
	6.10.3 DEID Auxiliary Function Block
	6.10.4 ID Auxiliary Function Block
	6.10.5 NSLOT Auxiliary Function Block
	6.10.6 SLOT Auxiliary Function Block
	6.10.7 STDDIAG Auxiliary Function Block

	6.11 Error Codes of the Function Blocks
	6.12 Control Panel (PROFIBUS DP Master)
	6.12.1 Context Menu (PROFIBUS DP Master)
	6.12.2 View Box (PROFIBUS Master)
	6.12.3 PROFIBUS DP Master State
	6.12.4 Behavior of the PROFIBUS DP Master
	6.12.5 Function of the FBx LED in the PROFIBUS Master

	6.13 HIMA PROFIBUS DP Slave
	6.13.1 Creating a HIMA PROFIBUS DP Slave

	6.14 Menu Functions of the PROFIBUS DP Slave
	6.14.1 Edit
	Process Variables
	System Variables

	6.14.2 Properties

	6.15 Control Panel (Profibus DP Slave)
	6.15.1 Context Menu (PROFIBUS DP Slave)
	6.15.2 View Box (PROFIBUS DP Slave)

	6.16 Function of the FBx LED in the PROFIBUS Slave

	7 Modbus
	7.1 HIMA Modbus Master
	7.2 Modbus Example
	7.2.1 Configuring the Modbus TCP Slave
	7.2.2 Configuring the Modbus TCP Master

	7.3 Example of Alternative Register/Bit Addressing
	7.4 Menu Functions of the HIMA Modbus Master
	7.4.1 Edit
	System Variables

	7.4.2 Properties
	General
	 CPU/COM

	7.5 Modbus Function Codes (Request Telegrams)
	7.5.1 Modbus Standard Function Codes
	7.5.2 HIMA-Specific Function Codes
	 Format of Request and Response Header

	7.5.3 Read Request Telegrams
	Read Coils (01) and Extended (100)
	Read Discrete Inputs (02) and Extended (101)
	Read Holding Registers (03) and Extended (102)
	Read Input Registers (04) and Extended (103)
	Read/Write Request Telegram
	Read Write Holding Register (23) and Extended (106)

	7.5.4 Write Request Telegram
	Write Multiple Coils (15) and Extended (104)
	Write Multiple Registers (16) and Extended (105)
	Write Single Coil (05)
	Write Single Register (06)

	7.5.5 Ethernet Slaves (TCP/UDP Slaves)
	7.5.6 System Variables for TCP/UDP Slaves
	7.5.7 TCP/UDP Slave Properties
	7.5.8 Modbus Gateway (TCP/UDP Gateway)
	7.5.9 Gateway Properties
	7.5.10 System Variables for the Gateway Slave
	7.5.11 Gateway Slave Properties
	7.5.12 Serial Modbus
	7.5.13 Serial Modbus Properties
	7.5.14 System Variables for the Modbus Slave
	7.5.15 Modbus Slave Properties

	7.6 Control Panel (Modbus Master)
	7.6.1 Context Menu (Modbus Master)
	7.6.2 View Box (Modbus Master)

	7.7 Control Panel (Modbus Master->Slave)
	7.8 FBx LED Function in the Modbus Master
	7.9 HIMA Modbus Slave
	7.9.1 Configuring the Modbus TCP Slave
	7.9.2 Configuring the Redundant Modbus TCP Slave
	7.9.3 Rules for Redundant Modbus TCP Slaves
	Slots Allowed for the Redundant Modbus Slave COM Modules
	Redundant Modbus Slave COM Modules in Different Base Plates

	7.10 Menu Functions of the HIMA Modbus Slave Set
	7.10.1 Modbus Slave Set Properties
	7.10.2 Register Variable
	7.10.3 Bit Variables
	7.10.4 Assigning Send/Receive Variables
	7.10.5 Modbus Slave Set System Variables
	7.10.6 Modbus Slave and Modbus Slave Redundant
	Properties

	7.10.7 Modbus Function Codes
	7.10.8 HIMA-Specific Function Codes
	 Format of Request and Response Header

	7.11 Addressing Modbus using Bit and Register
	7.11.1 Register Area
	HIMA Modbus Master Configuration of the Request Telegram

	7.11.2 Bit Area
	HIMA Modbus Master Configuration of the Request Telegram

	7.12 Offsets for Alternative Modbus Addressing
	7.12.1 Access to the Register Variables in the Bit Area of the Modbus Slave
	HIMA Modbus Master Configuration of the Request Telegram

	7.12.2 Access to the Bit Variables in the Register Area of the Modbus Slave
	HIMA Modbus Master Configuration of the Request Telegram

	7.13 Control Panel (Modbus Slave)
	7.13.1 Context Menu (Modbus Slave)
	7.13.2 View Box (Modbus Slave)
	7.13.3 View Box (Master Data)

	7.14 FBx LED Function in the Modbus Slave
	7.14.1 Error Codes of the Modbus TCP/IP Connection

	8 Send & Receive TCP
	8.1 System Requirements
	8.1.1 Creating a S&R TCP Protocol

	8.2 Example: S&R TCP Configuration
	8.2.1 S&R TCP Configuration of the HIMax Controller

	8.3 TCP S&R Protocols Menu Functions
	8.3.1 Edit
	System Variables

	8.3.2 Properties
	General
	CPU/COM

	8.4 Menu Functions for TCP Connection
	8.4.1 Edit
	Process Variables

	8.4.2 System Variables
	8.4.3 Properties

	8.5 Data Exchange
	8.5.1 TCP Connections
	8.5.2 Cyclic Data Exchange
	8.5.3 Acyclic Data Exchange with Function Blocks
	8.5.4 Simultaneous Cyclic and Acyclic Data Exchange
	8.5.5 Flow Control

	8.6 Third-Party Systems with Pad Bytes
	8.7 S&R TCP Function Blocks
	8.7.1 TCP_Reset
	8.7.2 TCP_Send
	8.7.3 TCP_Receive
	8.7.4 TCP_ReceiveLine
	8.7.5 TCP_ReceiveVar

	8.8 Control Panel (Send/Receive over TCP)
	8.8.1 Context Menu (Send/Receive Protocol)
	8.8.2 View Box (Send/Receive Protocol)
	8.8.3 View Box (Send/Receive Server)
	8.8.4 Error Code of the TCP Connection
	8.8.5 Additional Error Code Table for the Function Blocks
	8.8.6 Connection State
	8.8.7 Partner Connection State

	9 SNTP Protocol
	9.1 SNTP Client
	9.2 SNTP Client (Server Information)
	9.3 SNTP Server

	10 X OPC Server
	10.1 Equipment and System Requirements
	10.2 X-OPC Server Properties
	10.3 HIMax Controller Properties
	10.4 Actions Required as a Result of Changes
	10.5 Forcing Global Variables on I/O Modules
	10.6 Configuring an OPC Server Connection
	10.6.1 Software required:
	10.6.2 Requirements for Operating the X-OPC Server:
	10.6.3 Installation on Host PC
	10.6.4 Configuring the OPC Server in SILworX
	10.6.5 Settings for the OPC Server in the safeethernet Editor
	10.6.6 Configuring the X-OPC Data Access Server in SILworX
	10.6.7 Configuring the X-OPC Alarm&Event Server in SILworX
	10.6.8 Configuring the Views and Priorities in SILworX
	 Data Access View Priorities

	10.7 Alarm & Event Editor
	10.7.1 Boolean Events
	10.7.2 Scalar Events

	10.8 Parameters for the X-OPC Server Properties
	10.8.1 OPC Server Set
	10.8.2 OPC Server

	10.9 Uninstalling the X-OPC Server

	11 ComUserTask
	11.1 System Requirements
	11.1.1 Creating a ComUserTask

	11.2 Requirements
	11.3 Abbreviations
	11.4 CUT Interface in SILworX
	11.4.1 Schedule Interval [ms]
	11.4.2 Scheduling Preprocessing
	11.4.3 Scheduling Postprocessing
	11.4.4 STOP_INVALID_CONFIG
	11.4.5 CUT Interface Variables (CPU<->CUT)
	 System Variables
	 Process Variables
	Input Signals (COM->CPU)
	Output Signals (CPU->COM)

	11.5 CUT Functions
	11.5.1 COM User Callback Functions
	11.5.2 COM User Library Functions
	11.5.3 Header Files
	11.5.4 Code/Data Area and Stack for CUT
	11.5.5 Start Function CUCB_TaskLoop
	11.5.6 RS485 / RS232 IF Serial Interfaces
	 CUL_AscOpen
	 CUL_AscClose
	 CUL_AscRcv
	 CUCB_AscRcvReady
	 CUL_AscSend
	 CUCB_AscSendReady

	11.5.7 UDP/TCP Socket IF
	CUL_SocketOpenUdpBind
	 CUL_SocketOpenUdp
	 CUL_NetMessageAlloc
	 CUL_SocketSendTo
	 CUCB_SocketUdpRcv
	 CUL_NetMessageFree
	 CUL_SocketOpenTcpServer
	 CUCB_SocketTryAccept
	 CUL_SocketAccept
	 CUL_SocketOpenTcpClient
	 CUCB_SocketConnected
	 CUL_SocketSend
	 CUCB_SocketTcpRcv
	 CUL_SocketClose

	11.5.8 Timer-IF
	CUL_GetTimeStampMS
	CUL_GetDateAndTime

	11.5.9 Diagnosis

	11.6 Installing the Development Environment
	11.6.1 Installing the Cygwin Environment
	11.6.2 Installing the GNU Compiler

	11.7 Creating New CUT Projects
	11.7.1 CUT Makefiles
	Makefile with ".mke" Extension
	 Makefile
	Makefile with the "makeinc.inc.app" Extension

	11.7.2 Adapting C Source Codes
	 Configure Input and Output Variables
	Start Function in CUT
	Example Code "example_cut.c"
	 Creating Executable Codes (ldb file)

	11.7.3 Implementing the ComUserTask in the Project
	Creating the ComUserTask
	Loading Program Code into the Project
	Connecting Variables to CUT
	 Connecting Process Variables
	 Creating the SILworX User Program

	11.7.4 Faults while Loading a Configuration with CUT

	12 General
	12.1 Configuring the Function Blocks
	12.1.1 Purchasing Function Block Libraries
	12.1.2 Configuring the Function Blocks in the User Program
	12.1.3 Configuring the Function Blocks in the SILworX Structure Tree

	12.2 Maximum Communication Time Slice

	Appendix
	Glossary
	Index of Figures
	Index of Figures
	Index

