EN 50128 REQUIREMENTS
FUNCTION BLOCK DIAGRAM (FBD) PROGRAMMING

Safety Manager Janne Peltonen, MIPRO Oy
TOPICS

✓ MIPRO Oy – Finnish system integrator
✓ Advantages of previously certified and proven COTS Safety PLC platforms
✓ EN 50128 requirements for LVL application programming
✓ Safety management
✓ Development and testing aspects
Independent SYSTEM INTEGRATOR since 1980
- automation and information systems
- staff of 55 professionals
- Main office in Mikkeli, Finland
- Branch offices in Oulu and Helsinki

Main business area SAFETY-RELATED SYSTEMS
- Railway signalling systems and level crossings
- ESD systems and machinery safety systems for industries
- Central Train Control (CTC) systems for railways

Main business area INFRA
- Waterworks, wastewater treatment, boiler plants etc.
specialized

Safety Related Systems for Railways and industry

SRS

INFRA

Automation for Water and Wastewater Works

MAINTENANCE

Maintenance and after-sales services
Long Term Partnership History

- **Infrastructure Customers**
 - Continuous services and revamps

- **Industry**
 - Chemical Plants and Boiler Plants
 - Metal Manufacturing
 - Mining

- **Finnish Railways**
 - Over 10 years of continuous development and co-operation
 - Frame Contract to supply Safety Related Control Systems for Traffic Control
 - Maintenance Support Contract
Safety Related Systems

- Expertise in programmable safety systems
 - safety-critical system deliveries since 1987
 - 30+ professionals in safety-related projects
 - 6 TÜV-certified safety engineers
 - software development
 - main representative of HIMA in Finland
 - consulting services

- Adoption of international safety standards
 - ISO 9001 quality management system
 - IEC 61508 product certification
 - IEC 61511 process industries
 - IEC 62061 safety of machinery
 - EN 50126, EN 50128, EN 50129 railways
Development for railways since 1990

First Level Crossing Control commissioned 1995, still going strong
- Installed base of 50+ mainline Level Crossing Controls - and some others

Interlocking development started 1997
- Commercial, well known Safety PLC with excellent tools makes a trusted platform
- Field proven SCADA has all the necessary basic functions and the continuity

First Interlocking commissioned 1998

MiSO TCS Safety Case presented to RHK (EN 50129), 2001
- Quality System
- International Standards
After international competitive bidding 2002, MIPRO was appointed to build most of the "ATP 3rd phase, 2002-2006" Interlocking systems
- 2400+ rail kilometers covered already
- 130 + systems commissioned

Mipro was appointed to build the Oulu CTC, 2003
- 30 000 + active Database objects, 50+ Interlocking Systems

International subcontracting for ANSALDO, 2003
- Jyväskylä-Pieksämäki line, MiSO Remote/CTC, System Installation and Wayside contracting

5 year contract for Ilmala Interlocking, 2007
- Main service depot in Finland (60ha area, 55km of tracks, 260+ points)
MiSO Systems 1998 - 2006

Oulu CTC (extended functions) 2003-2005
- Oulu, MiSO Remote, 2003
- Oulu - Tornio, MiSO Remote, 2004
- Oulu - Kontiomäki, MiSO Remote, 2004
- Oulu - Ylivieska, MiSO Remote, 2003
- Tornio - Kolari, MiSO TCS, 2003
- Laurila - Kemijärvi, MiSO TCS, 2004
- Iisalmi - Ylivieska, MiSO TCS, 2004
- Iisalmi - Kontiomäki - Vartius, MiSO TCS, commissioning 2006
- TrainNumber, DispatchAutomation, MiSO Graphics, 2005

Pieksämäki CTC (basic functions), 2003
- Pieksämäki - Joensuu; Siilinjärvi – Viinijärvi, MiSO TCS, 2003
- Joensuu - Nurmes, MiSO TCS, 2005
- Parikkala (Savonlinna), MiSO TCS, 2005, 2006
- Jyväskylä - Pieksämäki, MiSO Remote, commissioning 2005
- Jyväskylä - Äänekoski, MiSO TCS, commissioning 2005
- Jyväskylä, MiSO Remote, commissioning 2005

Seinäjoki CTC (basic functions), 1998, 2004
- Orivesi - Haapamäki - Jyväskylä, MiSO TCS, 2003
- Haapamäki - Seinäjoki, 1998, 1999
- Seinäjoki - Vaasa, TCS, 2001

Other systems
- Karjaa - Hanko, MiSO Block, 2000
- Tornio - Kolari, MiSO Trail 1997, decommissioned
- Hyvinkää - Karjaa, MiSO Trail, 1998
- Helsinki Interlocking, MiSO Route, 2001
- Helsinki Interlocking, Monitoring, 2003
- Lappeenranta - Parikkala, MiSO Line, 2001, decommissioned
- Kouvolanselkä - Inkeroinen, MiSO Block, 2005
- Level Crossing Control Systems, 1995-
EN 50128 requirements for software

- Requirements for quality and safety management

- Requirements for software functionality

- Requirements for software safety integrity
 - Software has only systematic failures

- Requirements for software verification and validation
 - Everything needs to be checked, tested, assessed and approved

- Requirements for software configuration management

- Requirements apply to several software lifecycles
 - Hardware level embedded software development
 - Application level software development
Safety Integrity Levels (IEC 61508)

<table>
<thead>
<tr>
<th>Safety integrity level</th>
<th>Low Demand Mode of Operation (Average probability of failure to perform its design function on demand)</th>
<th>High Demand or Continuous Mode of Operation (Probability of a hazardous failure per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$\geq 10^{-5}$ to $< 10^{-4}$</td>
<td>$\geq 10^{-9}$ to $< 10^{-8}$</td>
</tr>
<tr>
<td>3</td>
<td>$\geq 10^{-4}$ to $< 10^{-3}$</td>
<td>$\geq 10^{-8}$ to $< 10^{-7}$</td>
</tr>
<tr>
<td>2</td>
<td>$\geq 10^{-3}$ to $< 10^{-2}$</td>
<td>$\geq 10^{-7}$ to $< 10^{-6}$</td>
</tr>
<tr>
<td>1</td>
<td>$\geq 10^{-2}$ to $< 10^{-1}$</td>
<td>$\geq 10^{-6}$ to $< 10^{-5}$</td>
</tr>
</tbody>
</table>

Clear definition – Unclear demonstration

How to calculate probability of failure for SOFTWARE?
EN 50128 requirements - demonstration

• System Safety Plan

• Hazard Log

• Software Quality Assurance Plan
 • Records of quality and safety management activities
 • Competency, responsibilities and independence of personnel
EN 50128 requirements - demonstration

• Software Functional Safety Requirements Specification

• Software Interface Requirements Specification

• Software Architecture Specification

• Software Safety Integrity Requirements Specification
 • Adequate methods according to EN 50128
 • Software safety integrity may differ from hardware safety integrity
EN 50128 requirements - demonstration

- Software Verification and Validation plan
 - Audit, review and inspection records
 - Test and analysis records

- Software Configuration Management plan
 - Identifiable and traceable record of approved software
 - Identifiable and traceable record of compatible hardware platform

- Safety Case for Independent safety assessment
 - Safety Assessor from Independent organisation
 - Assessor is not responsible for any testing activities and requires clear and auditable documentation
SIGNALLING SYSTEM LOGIC PART

• Safety certified (TÜV) COTS Safety PLC
• Extensive field experience
 • Installations and agents all over the world
 • Chemical industry
 • Manufacturing industry
 • Mining industry
 • Energy industry
• Certified and tested Generic Product platform for signalling system
LOGIC PART EMBEDDED SOFTWARE

• Safety certified (TÜV) embedded software
 • Code generator
 • Central module OS
 • Data communication OS
 • Ethernet-based safety-critical communication protocol

• Safety bus communication protocol
 • A must for railway applications
 • Safety guaranteed with EN 50159 approach

• Application software code generation from FBD
 • Only application part of software needs verification
SafeEthernet concept
SafeEthernet – Error detection methods

<table>
<thead>
<tr>
<th>Error</th>
<th>sequential number</th>
<th>timestamp</th>
<th>notice of receipt</th>
<th>identific. of sender and receiver</th>
<th>data backup</th>
<th>redundancy with cross-comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Loss</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Insertion</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Wrong Order</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Message corruption</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecting Safe and Non-Safe</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
PROVEN-IN-USE SUPPORT TOOLS

• IEC 61131-3 compliant FBD programming
 • Programming environment minimizes verification tasks
 • Programming environment minimizes human errors
 • Visual verification is possible

• Centralized maintenance supervision
 • Access to all diagnostics information
 • Program state monitoring online
 • Remote maintenance support
Programming environment

- Drag & drop
- Automatic consistency checks
- Checking tools
- Import/export functions
Application software module

- Full safety testing during development
- Formal interface minimizes human errors
- Storage of application related know-how
- Increased confidence through operation years
- Re-use allows rapid project implementation
Train Dispatcher’s World
SIGNALLING SYSTEM HMI

• Safety requirements SIL X?
• Practical safety issues to consider
 • Critical commands and confirmation
 • Indications and decision making
 • Alarm handling and diagnostics
 • Integration of different signalling systems
 • Minimizing choices
 • Automatic route control and wide-area remote control

• New generation of train dispatchers
 – Training, instructions and online help
Functional Safety Management

- Mandatory for safety related projects
- Requirements of safety standards
 - Evidence of quality management
 - Evidence of safety management
- Definition of...
 - Business processes
 - System safety lifecycle
- Applied basic requirement: single human error may not cause loss of safety function!
Functional Safety Management

- Project Safety Plan
 - Organizations, responsibilities & competencies
 - Hazard and risk analysis
 - Definition of system requirements and interfaces
 - Verification & Validation activities
 - Documentation & flow of information
 - Use of previously approved products and solutions
 - Independent assessment prior to start-up

- Risk from poor safety planning may be greater than risk from individual equipment
Software development V-model (MiSO application software)

Customer requirements
- Technical requirements
- Operation practices

Requirement management
- System design (whole system)

Requirement specification review
(approval of requirements)

Software design
- Architecture design
- HW design

Module design
- Module unit tests (classes)

Implementation
- Module Safety tests
- Module unit tests (classes)

Integration tests, HW FAT
(including HMI)

System testing
(software FAT including HMI)
incl. Safety tests

Site Integration tests (on-site)

Commissioning inspection
Approval tests (SAT)
(Customer)

Approval review

System review
(development project)

Publication review (software version control starts)

Sound expertise in customised automation
Management of application software classes (modules)

- **Project**
 - Checked and Approved requirement specifications
 - Project specific tests with published class
 - Project test records
 - Project configuration management

- **Author**
 - Design of class
 - Class development
 - Class unit tests
 - Class safety tests
 - Test records
 - Version control begins

- **Tester**
 - Test plan
 - Software module
 - Class approval and publication
 - Class records in class library

- **Administrator of class library**
 - TCS class library
 - ACS class library
 - Etc.

- **Product manager**
 - Class approval for use
Examples of practices

- Testability and understandability
 - Standard and classified variable names
 - Test planning covers entire functionality and any thinkable discontinuity and fault conditions
 - Safety functions are separated from other functions
 - Program state can be monitored from outside
 - Program records the first failure causing the stop
 - Program modules exchange information only through external visible interfaces
 - Freely programmed part of modules is defined and described
 - Commentation of program and explanation of restrictions
 - References to requirements specification inside program
 - Monitoring with automatically generated logs
Examples of practices

• Minimizing time-dependent characteristics
 • Avoidance of delays and pulses
 • Program execution monitoring
 • No parallel execution paths
 • Application of state machine design
 • Time windows for functions
 • Consideration of data communication delays
 • Monitoring/filtering of field data change rate
Examples of practices

• Verification of safety-critical information
 • Alarming signal range errors
 • Monitoring of data communication
 • Announcement of critical commands to operator
 • Use of combined signals instead of single signals

• Program identification and version control
 • Version control and modification management
 • Verification and Validation
 • Version identifiers inside the program
THANK YOU

FOR MORE INFORMATION:

janne.peltonen@mipro.fi

www.mipro.fi